General Method for Speeding Up Kinetic Monte Carlo Simulations

被引:18
|
作者
Rego, Artur S. C. [1 ]
Brandao, Amanda L. T. [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Chem & Mat Engn DEQM, BR-22451900 Rio De Janeiro, RJ, Brazil
关键词
FREE-RADICAL COPOLYMERIZATION; SUMMATION DIFFERENCE-EQUATIONS; MOLECULAR-WEIGHT DISTRIBUTION; CHAIN-LENGTH DISTRIBUTIONS; RAFT POLYMERIZATION; ICAR ATRP; ACCELERATION; POLYETHYLENE; OPTIMIZATION; COLLOCATION;
D O I
10.1021/acs.iecr.0c01069
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Kinetic Monte Carlo (MC) is the main stochastic strategy used to simulate polymerization systems, as it gives good results with simple formulation. Normally, the algorithm used in this method presents high computational times, being necessary to choose suitable control volume sizes, which gives reliable results in moderate simulation times. The use of high-level languages (Python, MATLAB) over low-level languages (C, Fortran) usually aggravates this scenario, as it is slower despite being easier to use. The current study presents a simple method for speeding up the MC simulation of polymerization reactions. First, the code itself is optimized to reduce by half the computational time required compared with the original code, and then a benchmark of pure Python and Python with Numba is made. The results show a drop in the computational times above 99% when using Numba instead of pure Python codes.
引用
收藏
页码:9034 / 9042
页数:9
相关论文
共 50 条
  • [41] Kinetic Monte Carlo simulations of the growth of polymer crystals
    Doye, JPK
    Frenkel, D
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (05): : 2692 - 2702
  • [42] Kinetic Monte Carlo Simulations of Polymer Cold Crystallization
    Cheng-Huan Xu
    Ji-Ping Wang
    Wen-Bing Hu
    Chinese Journal of Polymer Science, 2019, 37 : 627 - 632
  • [43] Kinetic Monte Carlo simulations of plasma-chemistry
    Dias, Tiago C.
    Guerra, Vasco
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (11):
  • [44] Fast electrostatic solvers for kinetic Monte Carlo simulations
    Saunders W.R.
    Grant J.
    Müller E.H.
    Thompson I.
    Journal of Computational Physics, 2020, 410
  • [45] Kinetic Monte Carlo Simulations of Polymer Cold Crystallization
    Cheng-Huan Xu
    Ji-Ping Wang
    Wen-Bing Hu
    Chinese Journal of Polymer Science, 2019, (06) : 627 - 632
  • [46] Kinetic Monte Carlo Simulations of Polymer Cold Crystallization
    Cheng-Huan Xu
    Ji-Ping Wang
    Wen-Bing Hu
    Chinese Journal of Polymer Science, 2019, 37 (06) : 627 - 632
  • [47] Kinetic Monte Carlo simulations of nanocrystalline film deposition
    Ruan, Shiyun
    Schuh, Christopher A.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (07)
  • [48] Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition
    Guo, L
    Radisic, A
    Searson, PC
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (50): : 24008 - 24015
  • [49] Kinetic Monte Carlo simulations of vacancy evolution in graphene
    Parisi, L.
    Di Giugno, R.
    Deretzis, I.
    Angilella, G. G. N.
    La Magna, A.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 42 : 179 - 182
  • [50] Acceleration of Proton Monte Carlo Simulations Using the Macro Monte Carlo Method
    Jacqmin, D.
    MEDICAL PHYSICS, 2012, 39 (06) : 3945 - 3945