DIOD: Fast, Semi-Supervised Deep ISAR Object Detection

被引:11
|
作者
Xue, Bin [1 ]
Tong, Ningning [1 ]
Xu, Xin [2 ]
机构
[1] Air Force Engn Univ, Grad Sch, Xian 710051, Shaanxi, Peoples R China
[2] Shaanxi Rural Commercial Bank Co Ltd, Shangluo 726400, Peoples R China
关键词
Object detection; semisupervised; region candidate; deep convolutional neural network; inverse synthetic aperture radar; SEGMENTATION;
D O I
10.1109/JSEN.2018.2879669
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Inverse synthetic aperture radar (ISAR) object detection is one of the most challenging problems in computer vision, and most existing ISAR object detection algorithms are complicated and perform poorly. To provide a convenient and high-quality ISAR object detection method, we propose a fast semi-supervised method, called DIOD, which is based on fully convolutional region candidate networks (FCRCNs) and deep convolutional neural networks. First, a region candidate is used to localize potential objects in most of the best detection methods, but this approach often results in the most intractable computational bottleneck. Thus, to perform localization robustly and accurately in minimal time, we propose an FCRCN with "seed" boxes at multiple scales and aspect ratios. This approach offers almost cost-free candidate computation and achieves excellent performance. Second, to overcome the lack of labeled training data, the model undergoes an efficient semi-supervised pretraining process followed by fine-tuning, which produces successful results. Finally, to further improve the accuracy and speed of the detection system, we introduce a novel sharing mechanism and a joint learning strategy that extract more discriminative and comprehensive features while simultaneously learning the latent shared and individual features and their correlations. Extensive experiments are conducted on two real-world ISAR datasets, and the results show that DIOD outperforms the existing state-of-the-art methods.
引用
收藏
页码:1073 / 1081
页数:9
相关论文
共 50 条
  • [21] WEAKLY SEMI-SUPERVISED ORIENTED OBJECT DETECTION WITH POINTS
    Zhang, Ziming
    Wang, Yucheng
    He, Chu
    Zhang, Qingyi
    Chen, Xi
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3080 - 3084
  • [22] Semi-supervised Object Detection via VC Learning
    Chen, Changrui
    Debattista, Kurt
    Han, Jungong
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 169 - 185
  • [23] SOOD: Towards Semi-Supervised Oriented Object Detection
    Hua, Wei
    Liang, Dingkang
    Li, Jingyu
    Liu, Xiaolong
    Zou, Zhikang
    Ye, Xiaoqing
    Bai, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15558 - 15567
  • [24] CrossRectify: Leveraging disagreement for semi-supervised object detection
    Ma, Chengcheng
    Pan, Xingjia
    Ye, Qixiang
    Tang, Fan
    Dong, Weiming
    Xu, Changsheng
    PATTERN RECOGNITION, 2023, 137
  • [25] Dense Learning based Semi-Supervised Object Detection
    Chen, Binghui
    Li, Pengyu
    Chen, Xiang
    Wang, Biao
    Zhang, Lei
    Hua, Xian-Sheng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4805 - 4814
  • [26] SEMI-SUPERVISED OBJECT DETECTION WITH SPARSELY ANNOTATED DATASET
    Yoon, Jihun
    Hong, Seungbum
    Choi, Min-Kook
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 719 - 723
  • [27] STOD: toward semi-supervised tiny object detection
    Guo Y.
    Feng Y.
    Du K.
    Cao L.
    Neural Computing and Applications, 2024, 36 (27) : 17107 - 17123
  • [28] Deep and fast: Deep learning hashing with semi-supervised graph construction
    Song, Jingkuan
    Gao, Lianli
    Zou, Fuhao
    Yan, Yan
    Sebe, Nicu
    IMAGE AND VISION COMPUTING, 2016, 55 : 101 - 108
  • [29] Semi-supervised Deep Learning for Network Anomaly Detection
    Sun, Yuanyuan
    Guo, Lili
    Li, Ye
    Xu, Lele
    Wang, Yongming
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2019, PT II, 2020, 11945 : 383 - 390
  • [30] Semi-supervised Deep Domain Adaptation for Deepfake Detection
    Seraj, Md Shamim
    Singh, Ankita
    Chakraborty, Shayok
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 1061 - 1071