Norm attaining multilinear forms on the spaces c0 or l1

被引:0
|
作者
Kim, Sung Guen [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Daegu 702701, South Korea
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2022年 / 5卷 / 01期
关键词
Norming attaining multilinear forms; norming points; norming sets;
D O I
10.33205/cma.981877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
T E G(nE) is called a norming attaining if there are x1, ... , xn E E such that 'Ix1'I = center dot center dot center dot = 'Ixn'I = 1 and |T (x1, ... , xn)| = 'IT'I, where G(nE) denotes the space of all continuous n-linear forms on E. We investigate norm attaining multilinear forms on c0 or l1.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [41] Spaces of operators and c0
    Lewis, P
    STUDIA MATHEMATICA, 2001, 145 (03) : 213 - 218
  • [42] On lattice-almost isometric copies of c0(Γ) and l1(Γ) in Banach lattices
    Rincon-Villamizar, Michael A.
    Fabian Leal-Archila, Andres
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 515 - 523
  • [43] Reproducing kernel Banach spaces with the l1 norm
    Song, Guohui
    Zhang, Haizhang
    Hickernell, Fred J.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (01) : 96 - 116
  • [44] On complemented copies of c0(ω1) in C(Kn) spaces
    Candido, Leandro
    Koszmider, Piotr
    STUDIA MATHEMATICA, 2016, 233 (03) : 209 - 226
  • [45] Isometric copies of c0 and l∞ in duals of Banach spaces
    Dowling, PN
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (01) : 223 - 227
  • [46] Diameter preserving linear bijections and C0(L) spaces
    Aizpuru, A.
    Rambla, F.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (02) : 377 - 383
  • [47] Continuous maps induced by embeddings of C0(K)spaces into C0(S, X)spaces
    Galego, Eloi Medina
    Rincon-Villamizar, Michael A.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (01): : 37 - 47
  • [48] 关于Banach空间中ε-等距于c0或l1序列
    陈建仁
    周玉英
    陈述涛
    哈尔滨师范大学自然科学学报, 1999, (02) : 3 - 7
  • [49] ON THE K-FUNCTIONALS OF ABSOLUTELY CALDERON ELEMENTS OF THE BANACH PAIR (l1,c0)
    Dmitriev, V. I.
    Zhuravleva, E. V.
    Mikhailova, O. Yu.
    Burilich, I. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (02) : 279 - 288
  • [50] Determining c0 in C(K) spaces
    Argyros, SA
    Kanellopoulos, V
    FUNDAMENTA MATHEMATICAE, 2005, 187 (01) : 61 - 93