Adaptive Active Learning as a Multi-armed Bandit Problem

被引:2
|
作者
Czarnecki, Wojciech M. [1 ]
Podolak, Igor T. [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
关键词
D O I
10.3233/978-1-61499-419-0-989
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new active learning strategy whose main focus is to have the ability to adapt to the unknown (or changing) learning scenario. We introduce the learners' ensemble based approach and model it as the multi-armed bandit problem. Presented application of simple exploration-exploitation trade-off algorithms from the UCB and EXP3 families show an improvement over using the classical strategies. Evaluation on data from UCI database compare three different selection algorithms. In our tests, presented method shows promising results.
引用
收藏
页码:989 / 990
页数:2
相关论文
共 50 条
  • [31] Contextual Combinatorial Volatile Multi-armed Bandit with Adaptive Discretization
    Nika, Andi
    Elahi, Sepehr
    Tekin, Cem
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1486 - 1495
  • [32] ADAPTIVE BOOLEAN COMPRESSIVE SENSING BY USING MULTI-ARMED BANDIT
    Kawaguchi, Yohei
    Togami, Masahito
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 3261 - 3265
  • [33] The non-stationary stochastic multi-armed bandit problem
    Allesiardo R.
    Féraud R.
    Maillard O.-A.
    Allesiardo, Robin (robin.allesiardo@gmail.com), 1600, Springer Science and Business Media Deutschland GmbH (03): : 267 - 283
  • [34] Multi-armed bandit for the cyclic minimum sitting arrangement problem
    Robles, Marcos
    Cavero, Sergio
    Pardo, Eduardo G.
    Cordon, Oscar
    COMPUTERS & OPERATIONS RESEARCH, 2025, 179
  • [35] Multi-armed bandit problem with online clustering as side information
    Dzhoha, Andrii
    Rozora, Iryna
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 427
  • [36] SOM-based Algorithm for Multi-armed Bandit Problem
    Manome, Nobuhito
    Shinohara, Shuji
    Suzuki, Kouta
    Tomonaga, Kosuke
    Mitsuyoshi, Shunji
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [37] Tug-of-War Model for Multi-armed Bandit Problem
    Kim, Song-Ju
    Aono, Masashi
    Hara, Masahiko
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2010, 6079 : 69 - +
  • [38] DYNAMIC ALLOCATION INDEX FOR THE DISCOUNTED MULTI-ARMED BANDIT PROBLEM
    GITTINS, JC
    JONES, DM
    BIOMETRIKA, 1979, 66 (03) : 561 - 565
  • [39] Dynamic Multi-Armed Bandit with Covariates
    Pavlidis, Nicos G.
    Tasoulis, Dimitris K.
    Adams, Niall M.
    Hand, David J.
    ECAI 2008, PROCEEDINGS, 2008, 178 : 777 - +
  • [40] Scaling Multi-Armed Bandit Algorithms
    Fouche, Edouard
    Komiyama, Junpei
    Boehm, Klemens
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1449 - 1459