Clustering of wavefront sensor subapertures to improve adaptive optics system performance

被引:0
|
作者
Brigantic, RT
Roggemann, MC
Welsh, BM
Bauer, KW
机构
来源
关键词
wavefront sensor; subapertures; adaptive optics system; performance; image quality; seeing conditions; light level; Greenwood frequency;
D O I
10.1117/12.279061
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a discussion of the trade-offs between fully and partially compensated adaptive optics systems. The key concept explored was the trade-offs to be made between increasing the system sample spacing by enlarging the size of subapertures and the associated decrease in noise levels at the wavefront sensor. A method to counteract the impact of low light levels on adaptive optics system performance without the use of laser beacons was examined. This method involves the notion of ''clustering'' smaller wavefront sensor subapertures into larger effective wavefront sensor subapertures via software instruction. However, for the modeled 1.6 meter adaptive optics system, no benefit was seen by switching to a clustering scheme.
引用
收藏
页码:551 / 560
页数:10
相关论文
共 50 条
  • [21] Practical application of the geometric wavefront sensor for adaptive optics
    Pal, Saloni
    Lambert, Andrew
    Weddell, Stephen J.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 72 - 76
  • [22] Performance simulation of the ERIS pyramid wavefront sensor module in the VLT adaptive optics facility
    Quiros-Pacheco, F.
    Agapito, G.
    Riccardi, A.
    Esposito, S.
    Le Louarn, M.
    Marchetti, E.
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [23] Forecasting wavefront corrections in an adaptive optics system
    Hafeez, Rehan
    Archinuk, Finn
    Fabbro, Sebastien
    Teimoorinia, Hossen
    Veran, Jean-Pierre
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2022, 8 (02)
  • [24] Photonic lantern wavefront reconstruction in a multi-wavefront sensor single-conjugate adaptive optics system
    Sengupta, Aditya B.
    Diaz, Jordan
    Gerard, Benjamin L.
    Jensen-Clem, Rebecca
    Dillon, Daren
    DeMartino, Matthew
    Bundy, Kevin
    Cetre, Sylvain
    Chambouleyron, Vincent
    ADAPTIVE OPTICS SYSTEMS IX, 2024, 13097
  • [25] Effects of imaging system noise on the correction capability of adaptive optics without a wavefront sensor
    Yang H.
    Li X.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2010, 37 (10): : 2520 - 2525
  • [26] Closed loop adaptive optics for microscopy without a wavefront sensor
    Kner, Peter
    Winoto, Lukman
    Agard, David A.
    Sedat, John W.
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XVII, 2010, 7570
  • [27] Design of an image projection correlating wavefront sensor for adaptive optics
    Cain, S
    OPTICAL ENGINEERING, 2004, 43 (07) : 1670 - 1681
  • [28] Common path interferometric wavefront sensor for extreme adaptive optics
    Love, GD
    Oag, TJD
    Kirby, AK
    OPTICS EXPRESS, 2005, 13 (09): : 3491 - 3499
  • [29] Adaptive optics for ophthalmic applications using a pyramid wavefront sensor
    Chamot, SR
    Dainty, C
    Esposito, S
    OPTICS EXPRESS, 2006, 14 (02): : 518 - 526
  • [30] The CAFADIS camera: a new tomographic wavefront sensor for Adaptive Optics
    Rodriguez-Ramos, J. M.
    Femenia, B.
    Montilla, I.
    Rodriguez-Ramos, L. F.
    Marichal-Hernandez, J. G.
    Lueke, J. P.
    Lopez, R.
    Diaz, J. J.
    Martin, Y.
    1ST AO4ELT CONFERENCE - ADAPTIVE OPTICS FOR EXTREMELY LARGE TELESCOPES, 2009,