Homotopy Colimits and Global Observables in Abelian Gauge Theory

被引:19
|
作者
Benini, Marco [1 ,2 ,3 ]
Schenkel, Alexander [1 ,2 ,3 ]
Szabo, Richard J. [1 ,2 ,3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[3] Tait Inst, Edinburgh, Midlothian, Scotland
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
Abelian gauge theory; global configurations and observables; chain complexes; homotopy limits and colimits; FIELDS;
D O I
10.1007/s11005-015-0765-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study chain complexes of field configurations and observables for Abelian gauge theory on contractible manifolds, and show that they can be extended to non-contractible manifolds using techniques from homotopy theory. The extension prescription yields functors from a category of manifolds to suitable categories of chain complexes. The extended functors properly describe the global field and observable content of Abelian gauge theory, while the original gauge field configurations and observables on contractible manifolds are recovered up to a natural weak equivalence.
引用
收藏
页码:1193 / 1222
页数:30
相关论文
共 50 条
  • [31] Homotopy theory of simplicial abelian Hopf algebras
    Goerss, P
    Turner, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 135 (02) : 167 - 206
  • [32] Gauge freedom in path integrals in Abelian gauge theory
    Saito, Teijiro
    Endo, Ryusuke
    Miura, Hikaru
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (02):
  • [33] Observables of lattice gauge theory in Minkowski space
    Biró, TS
    Markum, H
    Pullirsch, R
    Sakuler, W
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 121 : 307 - 311
  • [34] Stochastic Quantization of an Abelian Gauge Theory
    Shen, Hao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 1445 - 1512
  • [35] Surface operators in abelian gauge theory
    Tan, Meng-Chwan
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05):
  • [36] Topologically massive Abelian gauge theory
    Saygili, K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (13): : 2015 - 2035
  • [37] Stochastic Quantization of an Abelian Gauge Theory
    Hao Shen
    Communications in Mathematical Physics, 2021, 384 : 1445 - 1512
  • [38] STABILITY OF STRINGS IN GAUGE ABELIAN THEORY
    BOGOMOLNYI, EB
    VAINSHTEIN, AI
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1976, 23 (05): : 588 - 591
  • [39] Cohomological aspects of Abelian gauge theory
    Malik, RP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12): : 2437 - 2446
  • [40] Warped compactification with an abelian gauge theory
    Hayakawa, S
    Izawa, KI
    PHYSICS LETTERS B, 2000, 493 (3-4) : 380 - 382