Generation and Detection of Face Morphing Attacks

被引:8
|
作者
Hamza, Muhammad [1 ]
Tehsin, Samabia [1 ]
Karamti, Hanen [2 ]
Alghamdi, Norah Saleh [2 ]
机构
[1] Bahria Univ, Dept Comp Sci, Islamabad 44000, Pakistan
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11671, Saudi Arabia
关键词
Databases; Face recognition; Feature extraction; Training; Software; Gears; Faces; Morphing attack detection; fraudulent and forged digital identity documents; biometrics; facial recognition; access control; RECOGNITION; ILLUMINATION;
D O I
10.1109/ACCESS.2022.3188668
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Failure of facial recognition and authentication system may lead to several unlawful activities. The current facial recognition systems are vulnerable to different biometric attacks. This research focuses on morphing attack detection. This research proposes a robust detection mechanism that can deal with variation in age, illumination, eye and head gears. A deep learning based feature extractor along with a classifier is adopted. Additionally, image enhancement and feature combination are proposed to augment the detection results. A versatile dataset is also developed that contains Morph-2 and Morph-3 images, created by sophisticated tools with manual intervention. Morph-3 images can give more realistic appearance and hence difficult to detect. Moreover, Morph-3 images are not considered in the literature before. Professional morphing software depicts more realistic morph attack scenario as compared to the morphs generated in the previous work from free programs and code scripts. Eight face databases are used for creation of morphs to encompass the variation. These databases are Celebrity2000, Extended Yale, FEI, FGNET, GT-DB, MULTI-PIE, FERET and FRLL. Results are investigated using multiple experimental setups and it is concluded that the proposed methodology gives promising results.
引用
收藏
页码:72557 / 72576
页数:20
相关论文
共 50 条
  • [41] Detection of Face Recognition Adversarial Attacks
    Massoli, Fabio Valerio
    Carrara, Fabio
    Amato, Giuseppe
    Falchi, Fabrizio
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 202
  • [42] Fusion of Face Demorphing and Deep Face Representations for Differential Morphing Attack Detection
    Shiqerukaj, E.
    Rathgeb, C.
    Merkle, J.
    Drozdowski, P.
    Tams, B.
    PROCEEDINGS OF THE 21ST 2022 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2022), 2022, P-329
  • [43] MorDIFF: Recognition Vulnerability and Attack Detectability of Face Morphing Attacks Created by Diffusion Autoencoders
    Damer, Naser
    Fang, Meiling
    Siebke, Patrick
    Kolf, Jan Niklas
    Huber, Marco
    Boutros, Fadi
    2023 11TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS, IWBF, 2023,
  • [44] Low Visual Distortion and Robust Morphing Attacks Based on Partial Face Image Manipulation
    Qin L.
    Peng F.
    Venkatesh S.
    Ramachandra R.
    Long M.
    Busch C.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3 (01): : 72 - 88
  • [45] Face Morphing Detection: An Approach Based on Image Degradation Analysis
    Neubert, Tom
    DIGITAL FORENSICS AND WATERMARKING, 2017, 10431 : 93 - 106
  • [46] Face Morphing Attack Detection with Denoising Diffusion Probabilistic Models
    Ivanovska, Marija
    Struc, Vitomir
    2023 11TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS, IWBF, 2023,
  • [47] Focused LRP: Explainable AI for Face Morphing Attack Detection
    Seibold, Clemens
    Hilsmann, Anna
    Eisert, Peter
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 88 - 96
  • [48] Depth-guided Robust Face Morphing Attack Detection
    Rachalwar, Harsh
    Fang, Meiling
    Damer, Naser
    Das, Abhijit
    2023 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS, IJCB, 2023,
  • [49] Research on Face Image Morphing Based on Automatic Feature Detection
    Tian Guanglai
    Chen, Chi-Cheng
    Sun Gengxin
    Bin Sheng
    PROCEEDINGS OF THE 2ND IEEE EURASIA CONFERENCE ON BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY 2020 (IEEE ECBIOS 2020): BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY, 2020, : 172 - 174
  • [50] Face morphing attack detection and attacker identification based on a watchlist
    Peng, Fei
    Qin, Le
    Long, Min
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 107