Impact of DNA microarray data transformation on gene expression analysis - comparison of two normalization methods

被引:0
|
作者
Schmidt, Marcin T. [1 ]
Handschuh, Luiza [2 ,3 ]
Zyprych, Joanna [4 ]
Szabelska, Alicja [4 ]
Olejnik-Schmidt, Agnieszka K. [1 ]
Siatkowski, Idzi [4 ]
Figlerowicz, Marek [3 ,5 ]
机构
[1] Poznan Univ Life Sci, Dept Biotechnol & Food Microbiol, Poznan, Poland
[2] Inst Bioorgan Chem PAS, Poznan, Poland
[3] Poznan Univ Med Sci, Dept Hematol, Poznan, Poland
[4] Poznan Univ Life Sci, Dept Math & Stat Methods, Poznan, Poland
[5] Poznan Univ Tech, Inst Comp Sci, Poznan, Poland
关键词
microarray; gene expression profiling; transcriptome analysis; data normalization; adhesion; probiotic; enterocyte; EPITHELIAL-CELLS; BACTERIA; SELECTION; CONSISTENCY; TECHNOLOGY; INFECTION; BIOLOGY; LINE;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two-color DNA microarrays are commonly used for the analysis of global gene expression. They provide information on relative abundance of thousands of mRNAs. However, the generated data need to be normalized to minimize systematic variations so that biologically significant differences can be more easily identified. A large number of normalization procedures have been proposed and many softwares for microarray data analysis are available. Here, we have applied two normalization methods (median and loess) from two packages of microarray data analysis softwares. They were examined using a sample data set. We found that the number of genes identified as differentially expressed varied significantly depending on the method applied. The obtained results, i.e. lists of differentially expressed genes, were consistent only when we used median normalization methods. Loess normalization implemented in the two software packages provided less coherent and for some probes even contradictory results. In general, our results provide an additional piece of evidence that the normalization method can profoundly influence final results of DNA microarray-based analysis. The impact of the normalization method depends greatly on the algorithm employed. Consequently, the normalization procedure must be carefully considered and optimized for each individual data set.
引用
收藏
页码:573 / 580
页数:8
相关论文
共 50 条
  • [31] SED, a normalization free method for DNA microarray data analysis
    Wang, HJ
    Huang, H
    BMC BIOINFORMATICS, 2004, 5 (1)
  • [32] SED, a normalization free method for DNA microarray data analysis
    Huajun Wang
    Hui Huang
    BMC Bioinformatics, 5
  • [33] Gene set analysis methods applied to chicken microarray expression data
    Axel Skarman
    Li Jiang
    Henrik Hornshøj
    Bart Buitenhuis
    Jakob Hedegaard
    Lene N Conley
    Peter Sørensen
    BMC Proceedings, 3 (Suppl 4)
  • [34] Iterative rank-order normalization of gene expression microarray data
    Eric A Welsh
    Steven A Eschrich
    Anders E Berglund
    David A Fenstermacher
    BMC Bioinformatics, 14
  • [35] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [36] Iterative rank-order normalization of gene expression microarray data
    Welsh, Eric A.
    Eschrich, Steven A.
    Berglund, Anders E.
    Fenstermacher, David A.
    BMC BIOINFORMATICS, 2013, 14
  • [37] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [38] The genetics of gene expression: comparison of linkage scans using two phenotype normalization methods
    Mariza de Andrade
    Elizabeth J Atkinson
    Brooke L Fridley
    Ellen L Goode
    Shannon McDonnell
    Wen Liu-Mares
    Kari G Rabe
    Zhifu Sun
    Susan L Slager
    BMC Proceedings, 1 (Suppl 1)
  • [39] Array Analysis Manager-An automated DNA microarray analysis tool simplifying microarray data filtering, bias recognition, normalization, and expression analysis
    von der Haar, Marcel
    Lindner, Patrick
    Scheper, Thomas
    Stahl, Frank
    ENGINEERING IN LIFE SCIENCES, 2017, 17 (08): : 841 - 846
  • [40] GEPRO: Gene Expression Profiler for DNA microarray data
    Kim, Beob G.
    Lindemann, Merlin D.
    Bridges, Phillip J.
    Ko, CheMyong
    REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2009, 22 (01) : 12 - 18