A comminution model with homogeneity and multiplication assumptions for the Waste Electrical and Electronic Equipment recycling industry

被引:7
|
作者
Diani, Marco [1 ]
Pievatolo, Antonio [2 ]
Colledani, Marcello [1 ]
Lanzarone, Ettore [2 ]
机构
[1] Politecn Milan, Dept Mech Engn, Milan, Italy
[2] CNR, IMATI, Milan, Italy
关键词
Recycling; Comminution process; Multiplication assumption; Homogeneity assumption; Population balance model; Printed circuit boards; MINERAL LIBERATION; WEEE; BENEFITS;
D O I
10.1016/j.jclepro.2018.11.084
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sustainable circular economy is introducing new industrial challenges, including recycling, to move from the cradle-to-grave paradigm to the innovative cradle-to-cradle concept. The core of several recycling systems consists of mechanical comminution, which aims at producing homogeneous mixtures of highly liberated particles. However, the complexity of comminution processes requires adequate models to control and optimize their behavior within the entire recycling system. In the literature, the so-called Population Balance Model has been proposed, which is however limited to the mining industry. In this paper, we examine the applicability of the Population Balance Models in the Waste Electrical and Electronic Equipment recycling industry. In particular, we include the homogeneity and multiplication assumptions, and analyze the impact of the comminution chamber saturation. These simplifications reduce the number of model parameters to be estimated, as the set of parameters remains the same over a wide range of working conditions. We tested our assumptions on a real system for recycling Printed Circuit Boards. Results showed the validity of the multiplication assumption and a marginal effect of saturation (p values for rotor velocity and saturation were always above 25% in an ANOVA with the Bonferroni correction). The homogeneity assumption is also tenable, with the exception of the initial transient, as the null hypothesis of constant output mass distribution under equivalent shredding times was never rejected at the 5% significance level. Outcomes of an out-of-sample validation confirmed the effectiveness of our simplified Population Balance Model (values of the Kolmogorov-Smirnov metric lower than 0.1). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 678
页数:14
相关论文
共 50 条
  • [31] Environmental Risks Related to the Recovery and Recycling Processes of Waste Electrical and Electronic Equipment (WEEE)
    Generowicz, Agnieszka
    Iwanejko, Ryszarda
    PROBLEMY EKOROZWOJU, 2017, 12 (02): : 181 - 192
  • [32] Recycling of PBDEs containing plastics from waste electrical and electronic equipment (WEEE): A review
    Li, Ying
    Li, Jinhui
    Wang, Lihui
    2013 IEEE 10TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2013, : 407 - 412
  • [33] Waste electrical and electronic equipment (WEEE) management in Korea: generation, collection, and recycling systems
    Yong-Chul Jang
    Journal of Material Cycles and Waste Management, 2010, 12 : 283 - 294
  • [34] Two stage electrostatic separator for the recycling of plastics from waste electrical and electronic equipment
    Aksa, Wessim
    Medles, Karim
    Rezoug, Mohamed
    Boukhoulda, Mohamed Fodil
    Bilici, Mihai
    Dascalescu, Lucian
    JOURNAL OF ELECTROSTATICS, 2013, 71 (04) : 681 - 688
  • [35] Overview of China's Waste Electrical and Electronic Equipment Recycling in the Last Two Decades
    Deng, Yi
    Wu, Wenjie
    Zhang, Xihua
    Li, Shuyuan
    Song, Xiaolong
    Wang, Jingwei
    SUSTAINABILITY, 2024, 16 (23)
  • [36] Recycling of Electrical & Electronic Waste: Methods Used In Malaysia's SME Industry
    Saibani, Nizaroyani
    Ramli, Rizauddin
    Sabtu, Muhammad Idham
    Ramli, Norhidayah Fathirah
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ADVANCED PROCESSES AND SYSTEMS IN MANUFACTURING (APSIM 2016), 2016, : 73 - 74
  • [37] Prospective LCA of Waste Electrical and Electronic Equipment Thermo-Chemical Recycling by Pyrolysis
    Schulte, Anna
    Lamb-Scheffler, Moema
    Biessey, Philip
    Rieger, Tobias
    CHEMIE INGENIEUR TECHNIK, 2023, 95 (08) : 1268 - 1281
  • [38] Japan, the European Union, and waste electronic and electrical equipment recycling: Key lessons learned
    Graduate School of Public Policy, Hokkaido University, Sapporo 060-0809, Japan
    不详
    Environ. Eng. Sci., 1 (21-28):
  • [40] A novel object detection method to facilitate the recycling of waste small electrical and electronic equipment
    Wu, Qunbiao
    Wang, Ning
    Fang, Haifeng
    He, Defang
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2023, 25 (05) : 2861 - 2869