Effect of RF parameters on breakdown limits in high-vacuum X-band structures

被引:0
|
作者
Dolgashev, VA [1 ]
Tantawi, SG [1 ]
机构
[1] SLAC, Stanford, CA 94025 USA
来源
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RF breakdown is one of the major factors determining performance of high power rf components and rf sources. RF breakdown limits working power and produces irreversible surface damage. The breakdown limit depends on the rf circuit, structure geometry, and rf frequency. It is also a function of the input power, pulse width, and surface electric and magnetic fields. In this paper we discuss multi-megawatt operation of X-band rf structures at pulse width on the order of one microsecond. These structures are used in rf systems of high gradient accelerators. Recent experiments at Stanford Linear Accelerator Center (SLAC) have explored the functional dependence of breakdown limit on input power and pulse width. The experimental data covered accelerating structures and waveguides. Another breakdown limit of accelerating structures was associated with high magnetic fields found in waveguide-to-structure couplers. To understand and quantify these limits we simulated 3D structures with the electrodynamics code Ansoft HFSS and the Particle-In-Cell code MAGIC3D. Results of these simulations together with experimental data will be discussed in this paper.
引用
收藏
页码:151 / 165
页数:15
相关论文
共 50 条
  • [31] Measurement of parameters of X-band high power microwave superradiative pulses
    Klimov, A. I.
    Kovalchuk, O. B.
    Rostov, V. V.
    Sinyakov, A. N.
    2007 IEEE PULSED POWER CONFERENCE, VOLS 1-4, 2007, : 776 - 779
  • [32] Design of a variable X-band RF power splitter
    Zha, Hao
    Syratchev, Igor
    Gudkov, Dmitry
    Grudiev, Alexej
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 859 : 47 - 51
  • [33] Design and manufacturing of X-band RF MEMS switches
    Savin, Evgeny A.
    Chadin, Kirill A.
    Kirtaev, Roman V.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (06): : 2783 - 2788
  • [34] Performance of a second generation X-band rf photoinjector
    Marsh, R. A.
    Anderson, G. G.
    Anderson, S. G.
    Gibson, D. J.
    Barty, C. P. J.
    Hwang, Y.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2018, 21 (07):
  • [35] Improvements to the rf characteristics of a pulsed X-band magnetron
    Sobieradzki, Ed
    Saleem, Kesar
    Brady, Mick
    EIGHTH IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE, 2007, : 293 - +
  • [36] Design and manufacturing of X-band RF MEMS switches
    Evgeny A. Savin
    Kirill A. Chadin
    Roman V. Kirtaev
    Microsystem Technologies, 2018, 24 : 2783 - 2788
  • [37] X-band RF structure thermal analysis and tests
    Bini, S.
    Chimenti, V.
    Palumbo, L.
    Quintieri, L.
    Spataro, B.
    Tazzioli, F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 578 (01): : 55 - 64
  • [38] PERFORMANCE EVALUATION OF AN X-BAND RF SWITCHING RADIOMETER
    PARK, BK
    KIM, JH
    KIM, KC
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1991, 40 (02) : 483 - 485
  • [39] X-band RF MEMS tuned combline filter
    Nordquist, CD
    Goldsmith, CL
    Dyck, CW
    Kraus, GM
    Finnegan, PS
    Austin, E
    Sullivan, C
    ELECTRONICS LETTERS, 2005, 41 (02) : 76 - 77
  • [40] X-band rf structure with integrated alignment monitors
    Dehler, M.
    Raguin, J. -Y.
    Citterio, A.
    Falone, A.
    Wuensch, W.
    Riddone, G.
    Grudiev, A.
    Zennaro, R.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2009, 12 (06):