Asymptotic statistics of Poincare recurrences in Hamiltonian systems with divided phase space

被引:83
|
作者
Chirikov, BV [1 ]
Shepelyansky, DL
机构
[1] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
关键词
D O I
10.1103/PhysRevLett.82.528
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By different methods we show that for dynamical chaos in the standard map with critical golden curve, the Poincare recurrences P(tau) and correlations C(tau) decay asymptotically in time as P proportional to C/tau proportional to 1/tau(3). It is also explained why this asymptotic behavior starts only at very large times. We argue that the same exponent p = 3 should be also valid for a general chaos border. [S0031-9007(98)08272-6].
引用
收藏
页码:528 / 531
页数:4
相关论文
共 50 条
  • [21] Chaotic diffusion of orbits in systems with divided phase space
    Giordano, CM
    Cincotta, PM
    ASTRONOMY & ASTROPHYSICS, 2004, 423 (02) : 745 - 753
  • [22] Dynamical estimates of chaotic systems from Poincare recurrences
    Baptista, M. S.
    Maranhao, Dariel M.
    Sartorelli, J. C.
    CHAOS, 2009, 19 (04)
  • [23] Statistics of the island-around-island hierarchy in Hamiltonian phase space
    Alus, Or
    Fishman, Shmuel
    Meiss, James D.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [24] Polynomial approximation of Poincare maps for Hamiltonian systems
    Froeschle, C
    Lega, E
    EARTH MOON AND PLANETS, 1996, 72 (1-3): : 51 - 56
  • [25] On Poincare-Treshchev tori in Hamiltonian systems
    Li, Y
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 136 - 151
  • [26] Effective dynamics in Hamiltonian systems with mixed phase space
    Motter, AE
    de Moura, APS
    Grebogi, C
    Kantz, H
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [27] Evolution of measures in the phase space of nonlinear Hamiltonian systems
    Kozlov, VV
    Treshchev, DV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 136 (03) : 1325 - 1335
  • [28] Fourier Interpolation Method in Phase Space of Hamiltonian Systems
    Sasa, Narimasa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (05)
  • [29] Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
    V. V. Kozlov
    D. V. Treshchev
    Theoretical and Mathematical Physics, 2003, 136 : 1325 - 1335
  • [30] The Poincare bifurcation of cubic Hamiltonian systems with double centers
    Song, Y
    Tan, XX
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1046 - 1053