Asymptotic statistics of Poincare recurrences in Hamiltonian systems with divided phase space

被引:83
|
作者
Chirikov, BV [1 ]
Shepelyansky, DL
机构
[1] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
关键词
D O I
10.1103/PhysRevLett.82.528
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By different methods we show that for dynamical chaos in the standard map with critical golden curve, the Poincare recurrences P(tau) and correlations C(tau) decay asymptotically in time as P proportional to C/tau proportional to 1/tau(3). It is also explained why this asymptotic behavior starts only at very large times. We argue that the same exponent p = 3 should be also valid for a general chaos border. [S0031-9007(98)08272-6].
引用
收藏
页码:528 / 531
页数:4
相关论文
共 50 条
  • [1] Poincare recurrences in Hamiltonian systems with a few degrees of freedom
    Shepelyansky, D. L.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [2] CHAOTIC DYNAMICS IN HAMILTONIAN-SYSTEMS WITH DIVIDED PHASE-SPACE
    CHIRIKOV, BV
    LECTURE NOTES IN PHYSICS, 1983, 179 : 29 - 46
  • [3] Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space
    Altmann, EG
    Motter, AE
    Kantz, H
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [4] Statistics of Poincare recurrences in local and global approaches
    Anishchenko, Vadim S.
    Astakhov, Sergey V.
    Boev, Yaroslav I.
    Biryukova, Nadezhda I.
    Strelkova, Galina I.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (12) : 3423 - 3435
  • [5] Algebraic Statistics of Poincare Recurrences in a DNA Molecule
    Mazur, Alexey K.
    Shepelyansky, D. L.
    PHYSICAL REVIEW LETTERS, 2015, 115 (18)
  • [6] Spectral statistics of a system with sharply divided phase space
    Malovrh, J
    Prosen, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (10): : 2483 - 2490
  • [7] Statistics of Poincare recurrences for maps with integrable and ergodic components
    Hu, H
    Rampioni, A
    Rossi, L
    Turchetti, G
    Vaienti, S
    CHAOS, 2004, 14 (01) : 160 - 171
  • [8] Statistics of Poincare recurrences for a class of smooth circle maps
    Buric, N
    Rampioni, A
    Turchetti, G
    CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1829 - 1840
  • [9] Few Islands Approximation of Hamiltonian System with divided Phase Space
    Bunimovich, Leonid A.
    Casati, Giulio
    Prosen, Tomaz
    Vidmar, Gregor
    EXPERIMENTAL MATHEMATICS, 2021, 30 (04) : 459 - 468
  • [10] Poincare sections of Hamiltonian systems
    ChebTerrab, ES
    deOliveira, HP
    COMPUTER PHYSICS COMMUNICATIONS, 1996, 95 (2-3) : 171 - 189