A game theoretical approach to the classification problem in gene expression data analysis

被引:27
|
作者
Fragnelli, Vito [1 ]
Moretti, Stefano [1 ]
机构
[1] Natl Inst Canc Res, Unit Mol Epidemiol, I-16132 Genoa, Italy
关键词
gene expression analysis; cooperative game; classification problem; shapley value; interaction index;
D O I
10.1016/j.camwa.2006.12.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Microarray technology allows for the evaluation of the level of expression of thousands of genes in a sample of cells under a given condition. In this paper, we introduce a methodology based on cooperative Game Theory for the selection of groups of genes with high power in classifying samples, according to gene expression patterns. The connection between microarray games and classification games is discussed and the use of the Shapley value to measure the power of genes for classification is motivated on particular instances and compared to the interaction index. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:950 / 959
页数:10
相关论文
共 50 条
  • [31] Gene Expression Data Classification Using Independent Variable Group Analysis
    Zheng, Chunhou
    Zhang, Lei
    Li, Bo
    Xu, Min
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT 2, PROCEEDINGS, 2008, 5264 : 243 - +
  • [32] Using uncorrelated discriminant analysis for tissue classification with gene expression data
    Ye, JP
    Li, T
    Xiong, T
    Janardan, R
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2004, 1 (04) : 181 - 190
  • [34] Spatial clustering based gene selection for gene expression analysis in microarray data classification
    Dhas, P. Edwin
    Lalitha, S.
    Govindaraj, Annalakshmi
    Jyoshna, B.
    AUTOMATIKA, 2024, 65 (01) : 152 - 158
  • [35] A model for gene selection and classification of gene expression data
    Mohamad M.S.
    Omatu S.
    Deris S.
    Hashim S.Z.M.
    Artificial Life and Robotics, 2007, 11 (2) : 219 - 222
  • [36] A mixture model approach for the analysis of microarray gene expression data
    Allison, DB
    Gadbury, GL
    Heo, MS
    Fernández, JR
    Lee, CK
    Prolla, TA
    Weindruch, R
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) : 1 - 20
  • [37] A multivariate analysis approach to the integration of proteomic and gene expression data
    Fagan, Ailis
    Culhane, Aedin C.
    Higgins, Desmond G.
    PROTEOMICS, 2007, 7 (13) : 2162 - 2171
  • [38] A mixture model approach for the analysis of microarray gene expression data
    Allison, David B.
    Gadbury, Gary L.
    Heo, Moonseong
    Fernández, José R.
    Lee, Cheol-Koo
    Prolla, Tomas A.
    Weindruch, Richard
    Computational Statistics and Data Analysis, 2002, 38 (05): : 1 - 20
  • [39] A Graph Partitioning Game Theoretical Approach for the VNF Service Chaining Problem
    Leivadeas, Aris
    Kesidis, George
    Falkner, Matthias
    Lambadaris, Ioannis
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2017, 14 (04): : 890 - 903
  • [40] A Topological Data Analysis Approach on Predicting Phenotypes from Gene Expression Data
    Mandal, Sayan
    Guzman-Saenz, Aldo
    Haiminen, Niina
    Basu, Saugata
    Parida, Laxmi
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY (ALCOB 2020), 2020, 12099 : 178 - 187