A game theoretical approach to the classification problem in gene expression data analysis

被引:27
|
作者
Fragnelli, Vito [1 ]
Moretti, Stefano [1 ]
机构
[1] Natl Inst Canc Res, Unit Mol Epidemiol, I-16132 Genoa, Italy
关键词
gene expression analysis; cooperative game; classification problem; shapley value; interaction index;
D O I
10.1016/j.camwa.2006.12.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Microarray technology allows for the evaluation of the level of expression of thousands of genes in a sample of cells under a given condition. In this paper, we introduce a methodology based on cooperative Game Theory for the selection of groups of genes with high power in classifying samples, according to gene expression patterns. The connection between microarray games and classification games is discussed and the use of the Shapley value to measure the power of genes for classification is motivated on particular instances and compared to the interaction index. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:950 / 959
页数:10
相关论文
共 50 条
  • [1] A fuzzy intelligent approach to the classification problem in gene expression data analysis
    Khashei, Mehdi
    Hamadani, Ali Zeinal
    Bijari, Mehdi
    KNOWLEDGE-BASED SYSTEMS, 2012, 27 : 465 - 474
  • [2] GENE EXPRESSION DATA CLASSIFICATION AND PATTERN ANALYSIS USING DATA DRIVEN APPROACH
    Ramisa, Aiman Jabeen
    Hossain, Ananna
    Islam, S. K. Md Injamul
    Swadesh, Ponuel Mollah
    Islam, Md Toushif
    Rahman, Md Anisur
    Parvez, Mohammad Zavid
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 82 - 90
  • [3] An efficient approach for classification of gene expression microarray data
    Sreepada, Rama Syamala
    Vipsita, Swati
    Mohapatra, Puspanjali
    2014 FOURTH INTERNATIONAL CONFERENCE OF EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2014, : 344 - 348
  • [4] Evolutionary game theoretical approach for order problem
    Oura, H
    SOCIOLOGICAL THEORY AND METHODS, 2003, 18 (02) : 133 - 152
  • [5] Computational intelligence approach for gene expression data mining and classification
    Wang, ZY
    Kung, SY
    Zhang, JY
    Khan, J
    Xuan, JH
    Wang, Y
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 449 - 452
  • [6] An epicurean learning approach to gene-expression data classification
    Albrecht, A
    Vinterbo, SA
    Ohno-Machado, L
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2003, 28 (01) : 75 - 87
  • [7] Meta-learning approach to gene expression data classification
    de Souza, Bruno Feres
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2009, 2 (02) : 285 - 303
  • [8] Gene Expression Data Analysis for Classification of Bipolar Disorders
    Leska, V.
    Bei, E. S.
    Petrakis, E.
    Zervakis, M.
    XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016, 2016, 57 : 494 - 500
  • [9] A GAME-THEORETICAL APPROACH TO THE PROBLEM OF ENVIRONMENT PROTECTION
    ZAKHAROV, VV
    PETROSYAN, LA
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1981, (01): : 26 - 32
  • [10] Classification using functional data analysis for temporal gene expression data
    Leng, XY
    Müller, HG
    BIOINFORMATICS, 2006, 22 (01) : 68 - 76