Characteristic functions of Hartmann-Shack wavefront sensors and laser-ray-tracing aberrometers

被引:6
|
作者
Bara, Salvador [1 ]
机构
[1] Univ Santiago de Compostela, Dept Fis Aplicada, Area Opt, Santiago De Compostela 15782, Galiza, Spain
关键词
D O I
10.1364/JOSAA.24.003700
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that the aberration estimated at any point of the pupil using wavefront slope aberrometers such as Hartmann-Shack wavefront sensors or laser ray tracers is a spatial average of the actual aberration weighted by a characteristic function that depends on the aberrometer design and on the estimation procedure. This characteristic function, whose explicit form is given here for wavefront slope aberrometers using either modal or zonal estimators, may be useful in analyzing some basic aspects of the aberrometer performance. It is also instrumental in establishing the links between the statistical properties of the actual and the estimated aberrations. Explicit formulas are given to show in terms of this function how the bias arises in the first- and second-order statistics of the retrieved aberrations. This approach is mathematically equivalent to the analysis of the effects of modal coupling (cross-coupling and aliasing). It may provide, however, some complementary insight. (C) 2007 Optical Society of America.
引用
收藏
页码:3700 / 3707
页数:8
相关论文
共 50 条
  • [21] Hartmann-Shack wavefront reconstruction with bitmap image processing
    Bezzubik, Vitalii
    Belashenkov, Nikolai
    Soloviev, Oleg
    Vasilyev, Vladimir
    Vdovin, Gleb
    OPTICS LETTERS, 2020, 45 (04) : 972 - 975
  • [22] Phase unwrapping with a virtual Hartmann-Shack wavefront sensor
    Akondi, Vyas
    Falldorf, Claas
    Marcos, Susana
    Vohnsen, Brian
    OPTICS EXPRESS, 2015, 23 (20): : 25425 - 25439
  • [23] Hartmann-Shack wavefront sensing for nonlinear materials characterization
    Rativa, D.
    de Araujo, R. E.
    Gomes, A. S. L.
    Vohnsen, B.
    OPTICS EXPRESS, 2009, 17 (24): : 22047 - 22053
  • [24] Novel laser beam collimation system with Hartmann-Shack wavefront sensor as a tool
    Wu, Jiajie
    Chen, Jiabi
    Xu, Ancheng
    Gao, Xiaoyan
    5TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTICAL TEST AND MEASUREMENT TECHNOLOGY AND EQUIPMENT, 2010, 7656
  • [25] Hartmann-Shack wavefront sensor for adaptive optics confocal scanning laser ophthalmoscopy
    Bao Mingdi
    He Yi
    Ye Hong
    Xing Lina
    Fan Jinyu
    Chen Yiwei
    Shi Guohua
    AOPC 2023:OPTIC FIBER GYRO, 2023, 12968
  • [26] Wavefront stitching detection method based on Hartmann-Shack wavefront sensor
    Zheng, Hanqing
    Rao, Changhui
    Rao, Xuejun
    Jiang, Wenhan
    Yang, Jinsheng
    Guangxue Xuebao/Acta Optica Sinica, 2009, 29 (12): : 3385 - 3390
  • [27] Applications of Hartmann-Shack wavefront sensors - art. no. 60180N
    Jiang, Wenhan
    Rao, Xuejun
    Yang, Zeping
    Ling, Ning
    5th International Workshop on Adaptive Optics for Industry and Medicine, 2005, 6018 : N180 - N180
  • [28] Zernike modal wavefront reconstruction error of Hartmann-Shack wavefront sensor
    Li, Xinyang
    Jiang, Wenhan
    Guangxue Xuebao/Acta Optica Sinica, 2002, 22 (10): : 1236 - 1240
  • [29] Study on Zonal wavefront reconstruction adapting for Hartmann-Shack wavefront sensor
    Zhang, Qiang
    Jiang, Wenhan
    Xu, Bing
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 1998, 10 (02): : 229 - 233
  • [30] A custom CMOS-based Hartmann-Shack wavefront sensor
    La Schiazza, O
    Nirmaier, T
    Han, M
    Bille, JF
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46