Additive manufacturing of conductive and high-strength epoxy-nanoclay-carbon nanotube composites

被引:28
|
作者
Kasraie, Masoud [1 ]
Abadi, Parisa Pour Shahid Saeed [1 ,2 ,3 ,4 ]
机构
[1] Michigan Technol Univ, Mat Sci & Engn, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Mech Engn Engn Mech, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Biomed Engn, Houghton, MI 49931 USA
[4] Michigan Technol Univ, Hlth Res Inst, Houghton, MI 49931 USA
基金
美国国家科学基金会;
关键词
Additive manufacturing (AM); Direct-write (DW) printing; 3D printing; Carbon nanotube-epoxy composite; Conductive ink; Nanocomposite; ELECTRICAL-PROPERTIES; NANOCOMPOSITES; ENHANCEMENT; MATRIX;
D O I
10.1016/j.addma.2021.102098
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive Manufacturing has increased our ability to fabricate complex shapes and multi-material structures. Epoxy is excellent as the base for structural composite materials. Furthermore, carbon nanotube (CNT) is an outstanding filler due to its unique properties and functionalities. Here, conductive epoxy-nanoclay-CNT nano composite structures were fabricated by direct-write 3D printing. In this process, 3D-printable composite inks were synthesized by incorporation of nanoclay and different concentrations of CNTs - 0.25, 0.5, and 1 vol%, 0.43, 0.86, and 1.7 wt% - in epoxy. CNTs were found to significantly improve the electrical and mechanical properties. Rheological characterization of the inks revealed a shear-thinning behavior for all the nanocomposite inks and an increase in the complex viscosity, storage, and loss moduli with the incorporation of CNTs. The CNT concentration of 0.5 vol% was found to be the optimum condition for enhancement of mechanical properties; an average increase of 61%, 59%, and 31% was measured for flexural strength, flexural modulus, and tensile strength, respectively, compared to the 3D printed epoxy-nanoclay nanocomposite structures. The electrical conductivity of 2.4 x 10(-8) and 2.2 x 10(-6) S/cm was measured for the nanocomposites containing 0.5 and 1 vol % CNTs, respectively. Multi-scale characterization of the morphology revealed partial alignment of CNTs in the direction of printing, CNT pull-out and breakage at the fracture surfaces, and nano-scale interactions of the constituents, all of which contribute to the superiority of the nanocomposite with CNTs. The findings show the promise of this ink material and printing method for various applications such as aerospace structures and electronics.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High volume fraction carbon nanotube-epoxy composites
    Spitalsky, Z.
    Tsoukleri, G.
    Tasis, D.
    Krontiras, C.
    Georga, S. N.
    Galiotis, C.
    NANOTECHNOLOGY, 2009, 20 (40)
  • [42] Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers
    Hu, Zuncheng
    Sun, Xiucai
    Zhang, Xinshi
    Jia, Xiangzheng
    Feng, Xueting
    Cui, Mingwei
    Gao, Enlai
    Qian, Liu
    Gao, Xin
    Zhang, Jin
    Journal of the American Chemical Society, 2024,
  • [43] Progress and perspective on high-strength and multifunctional carbon nanotube fibers
    Li, Run
    Jiang, Qinyuan
    Zhang, Rufan
    SCIENCE BULLETIN, 2022, 67 (08) : 784 - 787
  • [44] Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers
    Hu, Zuncheng
    Sun, Xiucai
    Zhang, Xinshi
    Jia, Xiangzheng
    Feng, Xueting
    Cui, Mingwei
    Gao, Enlai
    Qian, Liu
    Gao, Xin
    Zhang, Jin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (16) : 11432 - 11439
  • [45] Aligned carbon nanotube-epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness
    Mikhalchan, Anastasiia
    Gspann, Thurid
    Windle, Alan
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (22) : 10005 - 10025
  • [46] Carbon nanotubes - High-strength reinforcing compounds for composites
    Lahr, B
    Sandler, J
    KUNSTSTOFFE-PLAST EUROPE, 2000, 90 (01): : A94 - +
  • [47] Strain Energy Dissipation Mechanisms in Carbon Nanotube Composites Fabricated by Additive Manufacturing
    Gardea, Frank
    Cole, Daniel
    Glaz, Bryan
    Riddick, Jaret
    MECHANICS OF ADDITIVE AND ADVANCED MANUFACTURING, VOL 9, 2018, : 29 - 36
  • [48] Electrothermal Actuation and Release of Adhesiveness of Conductive Carbon Nanotube/Epoxy Composites by Joule Heating
    Slobodian, Petr
    Riha, Pavel
    Olejnik, Robert
    Matyas, Jiri
    MACROMOLECULAR SYMPOSIA, 2022, 405 (01)
  • [49] ADDITIVE MANUFACTURING OF KEVLAR REINFORCED EPOXY COMPOSITES
    Nawafleh, Nashat
    Chabot, Jordan
    Aljaghtam, Mutabe
    Oztan, Cagri
    Dauer, Edward
    Gorguluarslan, Recep M.
    Demir, Teyfik
    Celik, Emrah
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 2A, 2019,
  • [50] High-Strength, Waterproof, Corrosion-Resistant Nano-Silica Carbon Nanotube Cementitious Composites
    Li, Hao
    Shi, Yongmin
    MATERIALS, 2020, 13 (17)