Singular hermitian metrics on vector bundles

被引:0
|
作者
de Cataldo, MAA [1 ]
机构
[1] Max Planck Inst Math, D-53225 Bonn, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of singular hermitian metrics (s.h.m.) for holomorphic Vector bundles and define positivity in view of L-2-estimates. Associated with a suitably positive s.h.m. there is a (coherent) sheaf 0-th kernel of a certain d "-complex. We prove a vanishing theorem for the cohomology of this sheaf. All this generalizes to the case of higher rank known results of Nadel for the case of line bundles. We introduce a new semi-positivity notion, t-nefness, for vector bundles, establish some of its basic properties and prove that on curves it coincides with ordinary nefness. We particularize the results on s.h.m. to the case of vector bundles of the form E = F x L, where F is a t-nef vector bundle and L is a positive (in the sense of currents) line bundle. As applications we generalize to the higher rank case (1) Kawamata-Viehweg Vanishing Theorem, (2) the effective results concerning the global generation of jets for the adjoint to powers of ample line bundles, and (3) Matsusaka Big Theorem made effective.(1).
引用
收藏
页码:93 / 122
页数:30
相关论文
共 50 条
  • [21] The metrics of Hermitian holomorphic vector bundles and the similarity of Cowen-Douglas operators
    Ji, Kui
    Ji, Shanshan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (03): : 736 - 749
  • [22] SINGULAR HERMITIAN METRICS WITH ISOLATED SINGULARITIES
    Inayama, Takahiro
    NAGOYA MATHEMATICAL JOURNAL, 2022, 248 : 980 - 989
  • [23] Hodge modules and singular hermitian metrics
    Schnell, Christian
    Yang, Ruijie
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (02)
  • [24] Hodge modules and singular hermitian metrics
    Christian Schnell
    Ruijie Yang
    Mathematische Zeitschrift, 2023, 303
  • [25] The Continuity Equation, Hermitian Metrics and Elliptic Bundles
    Sherman, Morgan
    Weinkove, Ben
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 762 - 776
  • [26] The Continuity Equation, Hermitian Metrics and Elliptic Bundles
    Morgan Sherman
    Ben Weinkove
    The Journal of Geometric Analysis, 2020, 30 : 762 - 776
  • [27] Deformation Quantization of Hermitian Vector Bundles
    Henrique Bursztyn
    Stefan Waldmann
    Letters in Mathematical Physics, 2000, 53 : 349 - 365
  • [28] Vector bundles and codes on the Hermitian curve
    Coles, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) : 2113 - 2120
  • [29] Deformation quantization of Hermitian vector bundles
    Bursztyn, H
    Waldmann, S
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (04) : 349 - 365
  • [30] ON SINGULAR DISTRIBUTION ON VECTOR BUNDLES
    Popescu, Paul
    Popescu, Marcela
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (5-6): : 641 - 649