Discovery and design of lithium battery materials via high-throughput modeling

被引:2
|
作者
Wang, Xuelong [1 ,2 ]
Xiao, Ruijuan [1 ]
Li, Hong [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Materials Genome Initiative; lithium battery materials; high-throughput simulations; material design; COMBINATORIAL APPROACH; SOLID ELECTROLYTES; ION CONDUCTORS; OPTIMIZATION; CHALLENGES; ELECTRODES; VOLTAGE; PROJECT; OXIDES;
D O I
10.1088/1674-1056/27/12/128801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High-throughput discovery metabolomics
    Fuhrer, Tobias
    Zamboni, Nicola
    Current Opinion in Biotechnology, 2015, 31 : 73 - 78
  • [32] High-throughput discovery metabolomics
    Fuhrer, Tobias
    Zamboni, Nicola
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 31 : 73 - 78
  • [33] High-throughput discovery metabolomics
    Fuhrer, Tobias
    Zamboni, Nicola
    Current Opinion in Biotechnology, 2015, 31 : 73 - 78
  • [34] Enabling high-throughput discovery
    Vaschetto, M
    Weissbrod, T
    Bodle, D
    Güner, O
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2003, 6 (03) : 377 - 383
  • [35] A high-throughput data analysis and materials discovery tool for strongly correlated materials
    Hasnain Hafiz
    Adnan Ibne Khair
    Hongchul Choi
    Abdullah Mueen
    Arun Bansil
    Stephan Eidenbenz
    John Wills
    Jian-Xin Zhu
    Alexander V. Balatsky
    Towfiq Ahmed
    npj Computational Materials, 4
  • [36] HIGH-THROUGHPUT REACTION DISCOVERY
    Halford, Bethany
    CHEMICAL & ENGINEERING NEWS, 2011, 89 (37) : 10 - 10
  • [37] The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals
    Haastrup, Sten
    Strange, Mikkel
    Pandey, Mohnish
    Deilmann, Thorsten
    Schmidt, Per S.
    Hinsche, Nicki F.
    Gjerding, Morten N.
    Torelli, Daniele
    Larsen, Peter M.
    Riis-Jensen, Anders C.
    Gath, Jakob
    Jacobsen, Karsten W.
    Mortensen, Jens Jorgen
    Olsen, Thomas
    Thygesen, Kristian S.
    2D MATERIALS, 2018, 5 (04):
  • [38] High-throughput discovery of kagome materials in transition metal oxide monolayers
    Wang, Renhong
    Wang, Cong
    Li, Ruixuan
    Guo, Deping
    Dai, Jiaqi
    Zong, Canbo
    Zhang, Weihan
    Ji, Wei
    CHINESE PHYSICS B, 2025, 34 (04)
  • [39] High-Throughput Synthesis of Thin Films for the Discovery of Energy Materials: A Perspective
    Moradi, Shahram
    Kundu, Soumya
    Saidaminov, Makhsud I.
    ACS MATERIALS AU, 2022, 2 (05): : 516 - 524
  • [40] High-throughput design of functional materials using materials genome approach
    杨可松
    Chinese Physics B, 2018, 27 (12) : 20 - 30