Integrability of Hamiltonian systems and the Lame equation

被引:2
|
作者
Kasperczuk, SP [1 ]
机构
[1] Univ Zielona Gora, Inst Phys, PL-65246 Zielona Gora, Poland
关键词
Hamiltonian systems; NVE; Lame equation; basically periodic solutions; monodromy matrix; integrability; Henon-Heiles system;
D O I
10.1016/j.aml.2004.03.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the integrability of Hamiltonian systems with two degrees of freedom. We investigate the normal variational equations and obtain a necessary condition for integrability of these systems. As an application we study the integrability of the Henon-Heiles system, whose normal variational equation is of Lame type. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 561
页数:7
相关论文
共 50 条
  • [31] Non-integrability of the second Painleve equation as a Hamiltonian system
    Stoyanova, T.
    Christov, O.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2007, 60 (01): : 13 - 18
  • [32] Occurrence of periodic Lame functions at bifurcations in chaotic Hamiltonian systems
    Brack, M
    Mehta, M
    Tanaka, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (40): : 8199 - 8220
  • [33] EXPLICIT INTEGRABILITY FOR HAMILTONIAN-SYSTEMS AND THE PAINLEVE CONJECTURE
    DORIZZI, B
    GRAMMATICOS, B
    RAMANI, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (03) : 481 - 485
  • [34] JORDAN OBSTRUCTION TO THE INTEGRABILITY OF HAMILTONIAN SYSTEMS WITH HOMOGENEOUS POTENTIALS
    Duval, Guillaume
    Maciejewski, Andrzej J.
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (07) : 2839 - 2890
  • [35] Integrability of Hamiltonian systems with homogeneous potentials of degree zero
    Casale, Guy
    Duval, Guillaume
    Maciejewski, Andrzej J.
    Przybylska, Maria
    PHYSICS LETTERS A, 2010, 374 (03) : 448 - 452
  • [36] INTEGRABILITY OF NON-HAMILTONIAN SYSTEMS AND THE PAINLEVE PROPERTY
    BOUNTIS, T
    PHYSICA D, 1984, 11 (03): : 402 - 402
  • [37] AN APPROACH TO THE INTEGRABILITY OF HAMILTONIAN-SYSTEMS OBTAINED BY REDUCTION
    ZENG, YB
    LI, YS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (03): : L89 - L94
  • [38] Necessary conditions for super-integrability of Hamiltonian systems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    Yoshida, Haruo
    PHYSICS LETTERS A, 2008, 372 (34) : 5581 - 5587
  • [39] THE CONCEPT OF INTEGRABILITY ON CANTOR SETS FOR HAMILTONIAN-SYSTEMS
    POSCHEL, J
    CELESTIAL MECHANICS, 1982, 28 (1-2): : 133 - 139
  • [40] ON THE COMPLETE AND PARTIAL INTEGRABILITY OF NON-HAMILTONIAN SYSTEMS
    BOUNTIS, TC
    RAMANI, A
    GRAMMATICOS, B
    DORIZZI, B
    PHYSICA A, 1984, 128 (1-2): : 268 - 288