Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function

被引:15
|
作者
Khan, Amir [1 ,2 ]
Zarin, Rahat [3 ]
Humphries, Usa Wannasingha [1 ]
Akgul, Ali [4 ]
Saeed, Anwar [5 ]
Gul, Taza [6 ]
机构
[1] King Mongkuts Univ Technol, Fac Sci, Dept Math, Th Nburi KMUTT, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Univ Swat, Dept Math & Stat, Khyber Pakhtunkhawa, Pakistan
[3] Univ Engn & Technol, Dept Basic Sci, Peshawar, Pakistan
[4] Siirt Univ, Art & Sci Fac Sci, Dept Math, TR-56100 Siirt, Turkey
[5] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] City Univ Sci & Informat Technol, Math Dept, Peshawar, Pakistan
关键词
Pandemic model; Mittag-Leffler function; Stability analysis; Optimal control; Sensitivity analysis; Numerical simulations; HEPATITIS-B-VIRUS; NONLINEAR INCIDENCE; STABILITY ANALYSIS; GLOBAL STABILITY; TRANSMISSION; VACCINATION; INFECTION;
D O I
10.1186/s13662-021-03546-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a fractional COVID-19 epidemic model with a convex incidence rate. The Atangana-Baleanu fractional operator in the Caputo sense is taken into account. We establish the equilibrium points, basic reproduction number, and local stability at both the equilibrium points. The existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Toufik-Atangana scheme. Optimal control analysis is carried out to minimize the infection and maximize the susceptible people.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] MITTAG-LEFFLER FUNCTION AND FRACTIONAL DIFFERENTIAL EQUATIONS
    Gorska, Katarzyna
    Lattanzi, Ambra
    Dattoli, Giuseppe
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 220 - 236
  • [42] Fractional Calculus of a Unified Mittag-Leffler Function
    J. C. Prajapati
    B. V. Nathwani
    Ukrainian Mathematical Journal, 2015, 66 : 1267 - 1280
  • [43] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [44] Mittag-Leffler wavelets and their applications for solving fractional optimal control problems
    Ghasempour, Arezoo
    Ordokhani, Yadollah
    Sabermahani, Sedigheh
    JOURNAL OF VIBRATION AND CONTROL, 2025, 31 (5-6) : 753 - 767
  • [45] On some properties of the generalized Mittag-Leffler function
    Khan, Mumtaz Ahmad
    Ahmed, Shakeel
    SPRINGERPLUS, 2013, 2
  • [46] THE LOCAL GENERALIZED DERIVATIVE AND MITTAG-LEFFLER FUNCTION
    Napoles Valdes, Juan E.
    Guzman, Paulo M.
    Lugo, Luciano M.
    Kashuri, Artion
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (02): : 1007 - 1017
  • [47] A generalized multiparameter function of Mittag-Leffler type
    Kalla, S. L.
    Haidey, V.
    Virchenko, N.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (12) : 901 - 911
  • [48] Multivariate analogue of generalized Mittag-Leffler function
    Saxena, R. K.
    Kalla, S. L.
    Saxena, Ravi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 533 - 548
  • [49] Generalized Mittag-Leffler Type Function: Fractional Integrations and Application to Fractional Kinetic Equations
    Nisar, Kottakkaran Sooppy
    FRONTIERS IN PHYSICS, 2020, 8
  • [50] A Study on Generalized Multivariable Mittag-Leffler Function via Generalized Fractional Calculus Operators
    Suthar, D. L.
    Andualem, Mitku
    Debalkie, Belete
    JOURNAL OF MATHEMATICS, 2019, 2019