Deep water riser collision avoidance by top tension control

被引:0
|
作者
Rustad, Anne M. [1 ]
Larsen, Carl M. [1 ]
Sorensen, Asgeir J. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Ctr Ships & Ocean Struct, N-7491 Trondheim, Norway
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
For tensioned riser arrays in deep waters interference between individual risers in strong ocean current is a key design and operational concern. The lateral deflections are likely to be large, and the risers may experience collision with fatigue or surface damage as a consequence. In this paper a system consisting of a tension leg platform (TLP), a pair of risers, environmental forces and hydrodynamic interaction is presented. The control system is described, and a set of control objectives with corresponding control strategies are suggested. The collision avoidance effects of the different control objectives are shown through simulations.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 50 条
  • [41] OPERATING A DRILLING RISER IN DEEP WATER.
    Warriner, Richard A.
    1600, (82):
  • [42] Transverse vibration analysis of the riser in deep water
    Li, Zifeng
    Wang, Peng
    Zhao, Min
    Li, Xuejiao
    Open Petroleum Engineering Journal, 2015, 8 : 38 - 44
  • [43] The lifetime dynamics of a deep water riser design
    Watters, AJ
    Smith, IC
    Garrett, DL
    APPLIED OCEAN RESEARCH, 1998, 20 (1-2) : 69 - 81
  • [44] Flexible riser technology for deep water applications
    Furukawa Electric Co.,Ltd., Japan
    不详
    Proc. Annu. Offshore Technol. Conf., 1600, (327-334):
  • [45] Pedestrian Collision Avoidance Using Deep Reinforcement Learning
    Alireza Rafiei
    Amirhossein Oliaei Fasakhodi
    Farshid Hajati
    International Journal of Automotive Technology, 2022, 23 : 613 - 622
  • [46] Deep Reinforcement Learning for Collision Avoidance of Robotic Manipulators
    Sangiovanni, Bianca
    Rendiniello, Angelo
    Incremona, Gian Paolo
    Ferrara, Antonella
    Piastra, Marco
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2063 - 2068
  • [47] Pedestrian Collision Avoidance Using Deep Reinforcement Learning
    Rafiei, Alireza
    Fasakhodi, Amirhossein Oliaei
    Hajati, Farshid
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2022, 23 (03) : 613 - 622
  • [48] A Collision Avoidance Method Based on Deep Reinforcement Learning
    Feng, Shumin
    Sebastian, Bijo
    Ben-Tzvi, Pinhas
    ROBOTICS, 2021, 10 (02)
  • [49] Deep Reinforcement Learning for Collision Avoidance of Autonomous Vehicle
    Tseng, Hsiao-Ting
    Hsieh, Chen-Chiung
    Lin, Wei-Ting
    Lin, Jyun-Ting
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [50] Multi-robot Target Encirclement Control with Collision Avoidance via Deep Reinforcement Learning
    Ma, Junchong
    Lu, Huimin
    Xiao, Junhao
    Zeng, Zhiwen
    Zheng, Zhiqiang
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 99 (02) : 371 - 386