How Intrinsically Disordered Proteins Modulate Biomolecular Condensates

被引:1
|
作者
Wang, Yanyan [1 ]
Chen, Limin [1 ]
Li, Siyang [1 ]
Lai, Luhua [1 ]
机构
[1] Peking Univ, Acad Adv Interdisplinary Studies, Chinese Acad Med Sci 2021RU014, Coll Chem & Mol Engn,Unit Drug Design Method, Beijing 100871, Peoples R China
关键词
intrinsically disordered proteins; biomolecular codensates; driving force; chemical compound regulation; LIQUID PHASE-SEPARATION; FORCE-FIELD; DOMAIN; PHOSPHORYLATION; GRANULES; MECHANISMS; POLYMERS; DROPLETS; BINDING; VIEW;
D O I
10.7535/PC220324
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomolecular condensates form various cellular membraneless organelles and play diverse biological functions as a result of their specific physicochemical properties. For example, biomolecular condensates are able to perceive changes in the external environment, regulate the cellular concentration of proteins, modulate different signaling pathways and selectively partition hub protiens as well as nucleic acids. Abnormal formation and changes of biomolecular condensates are closely related to human diseases, especially neurodegenerative diseases, cancers and viral diseases such as COVID-19. Intrinsically disordered proteins (IDPs) play key roles in the formation and regulation of biomolecular condensates formation and regulation, propose the possibility of rationally regulating biomolecular condensates through ligand design targeting IDPs, and discuss the challenges of understanding biomolecular condensates through ligand design targeting IDPs, and discuss the challenges of understanding biomolecular condensate formation and regulation mechanisms and for discovering novel chemical compounds to modulate biomolecular condensates.
引用
收藏
页码:1610 / 1618
页数:9
相关论文
共 50 条
  • [41] Dynamics and interactions of intrinsically disordered proteins
    Arai, Munehito
    Suetaka, Shunji
    Ooka, Koji
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 84
  • [42] Design of functional intrinsically disordered proteins
    Garg, Ankush
    Gonzalez-Foutel, Nicolas S.
    Gielnik, Maciej B.
    Kjaergaard, Magnus
    PROTEIN ENGINEERING DESIGN & SELECTION, 2024, 37
  • [43] Making Sense of Intrinsically Disordered Proteins
    Dyson, H. Jane
    BIOPHYSICAL JOURNAL, 2016, 110 (05) : 1013 - 1016
  • [44] Structural biophysics of intrinsically disordered proteins
    Showalter, Scott
    Gibbs, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [45] Intrinsically disordered proteins related to epigenomics
    Nishimura, Yoshifumi
    GENES & GENETIC SYSTEMS, 2014, 89 (06) : 293 - 293
  • [46] Intrinsically disordered proteins: administration not executive
    Williamson, Mike P.
    Potts, Jennifer R.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 : 945 - 949
  • [47] Intrinsically disordered proteins and multicellular organisms
    Dunker, A. Keith
    Bondos, Sarah E.
    Huang, Fei
    Oldfield, Christopher J.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2015, 37 : 44 - 55
  • [48] Classification of Intrinsically Disordered Regions and Proteins
    van der Lee, Robin
    Buljan, Marija
    Lang, Benjamin
    Weatheritt, Robert J.
    Daughdrill, Gary W.
    Dunker, A. Keith
    Fuxreiter, Monika
    Gough, Julian
    Gsponer, Joerg
    Jones, David T.
    Kim, Philip M.
    Kriwacki, Richard W.
    Oldfield, Christopher J.
    Pappu, Rohit V.
    Tompa, Peter
    Uversky, Vladimir N.
    Wright, Peter E.
    Babu, M. Madan
    CHEMICAL REVIEWS, 2014, 114 (13) : 6589 - 6631
  • [49] Fine structures of intrinsically disordered proteins
    Seth, Swarnadeep
    Stine, Brandon
    Bhattacharya, Aniket
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (01):
  • [50] Intrinsically disordered proteins from A to Z
    Uversky, Vladimir N.
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2011, 43 (08): : 1090 - 1103