Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration

被引:216
|
作者
Wang, Zhen [1 ]
Wang, Yichuan [2 ]
Yan, Jiaqi [1 ,3 ]
Zhang, Keshi [2 ]
Lin, Feng [1 ]
Xiang, Lei [1 ]
Deng, Lianfu [1 ]
Guan, Zhenpeng [2 ]
Cui, Wenguo [1 ]
Zhang, Hongbo [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Inst Traumatol & Orthopaed, Shanghai Key Lab Prevent & Treatment Bone & Joint, Dept Orthopaed,Ruijin Hosp,Sch Med, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China
[2] Peking Univ, Dept Orthoped, Shougang Hosp, 9 Jinyuanzhuang Rd, Beijing 100144, Peoples R China
[3] Abo Akad Univ, Pharmaceut Sci Lab, Fac Sci & Engn, Turku 20520, Finland
基金
芬兰科学院;
关键词
Electrospinning; 3D bioprinting; Bone repair; Tissue engineering; Regenerative medicine; MESENCHYMAL STEM-CELLS; MESOPOROUS HYDROXYAPATITE MICROSPHERES; VITRO OSTEOGENIC DIFFERENTIATION; CALCIUM-PHOSPHATE CERAMICS; IN-VITRO; MECHANICAL-PROPERTIES; COMPOSITE SCAFFOLDS; BIOACTIVE GLASS; GROWTH-FACTOR; COMPRESSIVE STRENGTH;
D O I
10.1016/j.addr.2021.05.007
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone defects. The goal of this review is to summarize the points of scaffold design as well as applications for bone regeneration based on both electrospinning and 3D bioprinting. It first briefly introduces biological characteristics of bone regeneration and summarizes the applications of different types of material and the considerations for bone regeneration including polymers, ceramics, metals and composites. We then discuss electrospinning nanofibrous scaffold applied for the bone regenerative engineering with various properties, components and structures. Meanwhile, diverse design in the 3D bioprinting scaffolds for osteogenesis especially in the role of drug and bioactive factors delivery are assembled. Finally, we discuss challenges and future prospects in the development of electrospinning and 3D bioprinting for osteogenesis and prominent strategies and directions in future. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:504 / 534
页数:31
相关论文
共 50 条
  • [21] Silkworm spinning inspired 3D printing toward a high strength scaffold for bone regeneration
    Yao, Yingkai
    Guan, Diqin
    Zhang, Chenke
    Liu, Jing
    Zhu, Xufeng
    Huang, Tingting
    Liu, Jie
    Cui, Hongjuan
    Tang, Kang-lai
    Lin, Jinxin
    Li, Fengyu
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (36) : 6946 - 6957
  • [22] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Xiangjia Li
    Yuan Yuan
    Luyang Liu
    Yuen-Shan Leung
    Yiyu Chen
    Yuxing Guo
    Yang Chai
    Yong Chen
    Bio-Design and Manufacturing, 2020, (01) : 15 - 29
  • [23] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Li, Xiangjia
    Yuan, Yuan
    Liu, Luyang
    Leung, Yuen-Shan
    Chen, Yiyu
    Guo, Yuxing
    Chai, Yang
    Chen, Yong
    BIO-DESIGN AND MANUFACTURING, 2020, 3 (01) : 15 - 29
  • [24] MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration
    Pan, Ting
    Song, Wenjing
    Xin, Hongbao
    Yu, Haiyue
    Wang, He
    Ma, Dandan
    Cao, Xiaodong
    Wang, Yingjun
    BIOACTIVE MATERIALS, 2022, 10 : 1 - 14
  • [25] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Xiangjia Li
    Yuan Yuan
    Luyang Liu
    YuenShan Leung
    Yiyu Chen
    Yuxing Guo
    Yang Chai
    Yong Chen
    Bio-Design and Manufacturing, 2020, 3 (01) : 15 - 29
  • [26] Bone ECM-like 3D Printing Scaffold with Liquid Crystalline and Viscoelastic Microenvironment for Bone Regeneration
    Liu, Kun
    Li, Lin
    Chen, Jingsheng
    Li, Yizhi
    Wen, Wei
    Lu, Lu
    Li, Lihua
    Li, Hong
    Liu, Mingxian
    Zhou, Changren
    Luo, Binghong
    ACS NANO, 2022, : 21020 - 21035
  • [27] Hybrid Fabrication of Biomimetic Meniscus Scaffold by 3D Printing and Parallel Electrospinning
    Sooriyaarachchi, Dilshan
    Wu, Jiaxin
    Feng, Aixin
    Islam, Maksud
    Tan, George Z.
    47TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 47), 2019, 34 : 528 - 534
  • [28] 3D Printing Technology in Design of Pharmaceutical Products
    Ameeduzzafar
    Alruwaili, Nabil K.
    Rizwanullah, Md.
    Bukhari, Syed Nasir Abbas
    Amir, Mohd
    Ahmed, Muhammad Masood
    Fazil, Mohammad
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (42) : 5009 - 5018
  • [29] 3D printing in the design of pharmaceutical dosage forms
    Souto, E. B.
    Campos, J. C.
    Filho, S. C.
    Teixeira, M. C.
    Martins-Gomes, C.
    Zielinska, A.
    Carbone, C.
    Silva, A. M.
    PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2019, 24 (08) : 1044 - 1053
  • [30] Development of 3D Bioactive Composite Scaffold for Bone Regeneration
    Li, J.
    Habibovic, P.
    Moroni, L.
    TISSUE ENGINEERING PART A, 2017, 23 : S90 - S90