Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge

被引:6
|
作者
Li, Tao [1 ]
Xiong, Ying [1 ]
Wang, Xiaolong [1 ]
Chen, Qingcai [1 ,2 ]
Tang, Buzhou [1 ,2 ]
机构
[1] Harbin Inst Technol, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
关键词
Medical relation extraction; Graph neural network; Document structure; External knowledge;
D O I
10.1186/s12911-021-01733-1
中图分类号
R-058 [];
学科分类号
摘要
Objective Relation extraction (RE) is a fundamental task of natural language processing, which always draws plenty of attention from researchers, especially RE at the document-level. We aim to explore an effective novel method for document-level medical relation extraction. Methods We propose a novel edge-oriented graph neural network based on document structure and external knowledge for document-level medical RE, called SKEoG. This network has the ability to take full advantage of document structure and external knowledge. Results We evaluate SKEoG on two public datasets, that is, Chemical-Disease Relation (CDR) dataset and Chemical Reactions dataset (CHR) dataset, by comparing it with other state-of-the-art methods. SKEoG achieves the highest F1-score of 70.7 on the CDR dataset and F1-score of 91.4 on the CHR dataset. Conclusion The proposed SKEoG method achieves new state-of-the-art performance. Both document structure and external knowledge can bring performance improvement in the EoG framework. Selecting proper methods for knowledge node representation is also very important.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Dual-stream dynamic graph structure network for document-level relation extraction
    Zhong, Yu
    Shen, Bo
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (09)
  • [12] Automatic Graph Generation for Document-Level Relation Extraction
    Yu, Yanhua
    Shen, Fangting
    Yang, Shengli
    Li, Jie
    Wang, Yuling
    Ma, Ang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [13] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Sun, Qi
    Zhang, Kun
    Huang, Kun
    Li, Xun
    Zhang, Ting
    Xu, Tiancheng
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15429 - 15439
  • [14] Improving Graph-based Document-Level Relation Extraction Model with Novel Graph Structure
    Park, Seongsik
    Yoon, Dongkeun
    Kim, Harksoo
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4379 - 4383
  • [15] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Sun, Qi
    Zhang, Kun
    Huang, Kun
    Li, Xun
    Zhang, Ting
    Xu, Tiancheng
    Neural Computing and Applications, 2022, 34 (18) : 15429 - 15439
  • [16] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Qi Sun
    Kun Zhang
    Kun Huang
    Xun Li
    Ting Zhang
    Tiancheng Xu
    Neural Computing and Applications, 2022, 34 : 15429 - 15439
  • [17] A Hierarchical Network for Multimodal Document-Level Relation Extraction
    Kong, Lingxing
    Wang, Jiuliang
    Ma, Zheng
    Zhou, Qifeng
    Zhang, Jianbing
    He, Liang
    Chen, Jiajun
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 18408 - 18416
  • [18] Document-Level Relation Extraction with Deep Gated Graph Reasoning
    Liang, Zeyu
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2024, 32 (07) : 1037 - 1050
  • [19] Graph neural networks with selective attention and path reasoning for document-level relation extraction
    Hang, Tingting
    Feng, Jun
    Wang, Yunfeng
    Yan, Le
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5353 - 5372
  • [20] Enhancing Document-Level Relation Extraction by Entity Knowledge Injection
    Wang, Xinyi
    Wang, Zitao
    Sun, Weijian
    Hu, Wei
    SEMANTIC WEB - ISWC 2022, 2022, 13489 : 39 - 56