Cyclic quasi-symmetric designs and self-orthogonal codes of length 63

被引:0
|
作者
Sarami, Chekad [2 ]
Tonchev, Vladimir D. [1 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[2] Fayetteville State Univ, Dept Math & Comp Sci, Fayetteville, NC 28301 USA
关键词
quasi-symmetric design; cyclic code; finite geometry; MATRICES;
D O I
10.1016/j.jspi.2007.05.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The enumeration of binary cyclic self-orthogonal codes of length 63 is used to prove that any cyclic quasi-symmetric 2-(63, 15, 35) design with block intersection numbers x = 3 and y = 7 is isomorphic to the geometric design having as blocks the three-dimensional subspaces in PG(5, 2). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [31] Quasi-symmetric 2-(41,9,9) designs and doubly even self-dual codes of length 40
    Munemasa, Akihiro
    Tonchev, Vladimir D.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (06) : 855 - 866
  • [32] Self-orthogonal greedy codes
    Des Codes Cryptography, 1 (79):
  • [33] Self-orthogonal greedy codes
    Monroe, L
    CODES, DESIGNS AND GEOMETRY, 1996, : 75 - 79
  • [34] ON SELF-ORTHOGONAL DESIGNS AND CODES RELATED TO HELD'S SIMPLE GROUP
    Crnkovic, Dean
    Crnkovic, Vedrana Mikulic
    Rodrigues, Bernardo G.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (03) : 607 - 628
  • [35] A NOTE ON SELF-ORTHOGONAL CODES
    POTT, A
    DISCRETE MATHEMATICS, 1989, 76 (03) : 283 - 284
  • [36] QUASI-SYMMETRIC DESIGNS AND QUADRATIC POLYNOMIALS
    SHRIKHANDE, MS
    COMBINATORICS /, 1988, 52 : 471 - 480
  • [37] Maximal arcs and quasi-symmetric designs
    Dieter Jungnickel
    Vladimir D. Tonchev
    Designs, Codes and Cryptography, 2015, 77 : 365 - 374
  • [38] An infinite family of quasi-symmetric designs
    Blokhuis, A
    Haemers, WH
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 95 (1-2) : 117 - 120
  • [39] Extending self-orthogonal codes
    Bassa, Alp
    Tutas, Nesrin
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2177 - 2182
  • [40] QUASI-SYMMETRIC DESIGNS ON 56 POINTS
    Krcadinac, Vedran
    Kruc, Renata Vlahovic
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, 15 (04) : 633 - 646