An Efficient Load Forecasting in Predictive Control Strategy Using Hybrid Neural Network

被引:8
|
作者
Sengar, Shweta [1 ]
Liu, Xiaodong [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Sch Control Sci & Engn, Dalian, Peoples R China
关键词
Load forecasting; neural network; cuckoo search; Levy-flight; hybrid neural network; ENERGY MANAGEMENT; MODEL; OPTIMIZATION; OPERATION; MICROGRIDS; SYSTEMS; GRIDS;
D O I
10.1142/S0218126620500103
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Load forecasting is a difficult task, because the load series is complex and exhibits several levels of seasonality. The load at a given hour is dependent not only on the load at the previous day, but also on the load at the same hour on the previous day and previous week, and because there are many important exogenous variables that must be considered. Most of the researches were simultaneously concentrated on the number of input variables to be considered for the load forecasting problem. In this paper, we concentrate on optimizing the load demand using forecasting of the weather conditions, water consumption, and electrical load. Here, the neural network (NN) power load forecasting model clubbed with Levy-flight from cuckoo search algorithm is proposed, i.e., called hybrid neural network (HNN), and named as LF-HNN, where the Levy-flight is used to automatically select the appropriate spread parameter value for the NN power load forecasting model. The results from the simulation work have demonstrated the value of the LF-HNN approach successfully selected the appropriate operating mode to achieve optimization of the overall energy efficiency of the system using all available energy resources.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Peak load forecasting using analyzable structured neural network
    Matsui, T
    Iizaka, T
    2001 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-3, 2001, : 405 - 410
  • [22] Short Term Load Forecasting by Using Neural Network Structure
    Mirhosseini, M.
    Marzband, M.
    Oloomi, M.
    ECTI-CON: 2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 219 - +
  • [23] Electric Load Forecasting Using Parallel RBF Neural Network
    Liu, Feng
    Wang, Zhifang
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 531 - 534
  • [24] Air compressor load forecasting using artificial neural network
    Wu, Da-Chun
    Asl, Babak Bahrami
    Razban, Ali
    Chen, Jie
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [25] Air compressor load forecasting using artificial neural network
    Wu, Da-Chun
    Bahrami Asl, Babak
    Razban, Ali
    Chen, Jie
    Razban, Ali (arazban@iupui.edu), 1600, Elsevier Ltd (168):
  • [26] PEAK LOAD FORECASTING USING A FUZZY NEURAL-NETWORK
    DASH, PK
    LIEW, AC
    RAHMAN, S
    ELECTRIC POWER SYSTEMS RESEARCH, 1995, 32 (01) : 19 - 23
  • [27] Short Term Load Forecasting Using Artificial Neural Network
    Singh, Saurabh
    Hussain, Shoeb
    Bazaz, Mohammad Abid
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 159 - 163
  • [28] ELECTRIC-LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK
    PARK, DC
    ELSHARKAWI, MA
    MARKS, RJ
    ATLAS, LE
    DAMBORG, MJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (02) : 442 - 449
  • [29] Short term load forecasting using artificial neural network
    Banda, E.
    Folly, K. A.
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 108 - 112
  • [30] A Hybrid Sequence -to -Sequence Using Attention Mechanism and Convolutional Neural Network for Multistep Electricity Load Forecasting
    Sun, Shuo
    Wang, Xinli
    Yin, Xiaohong
    Wang, Lei
    Cheng, Xuexiao
    Li, Yafeng
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,