Contribution of SARS-CoV-2 RNA shedding routes to RNA loads in wastewater

被引:65
|
作者
Crank, K. [1 ]
Chen, W. [1 ]
Bivins, A. [1 ]
Lowry, S. [2 ]
Bibby, K. [1 ]
机构
[1] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, 156 Fitzpatrick Hall, South Bend, IN 46556 USA
[2] Georgia Inst Technol, Dept Civil & Environm Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
SARS-CoV-2; RNA; Shedding route; Wastewater; Wastewater surveillance; Wastewater-based epidemiology; COVID-19; SETTLED SOLIDS; COVID-19;
D O I
10.1016/j.scitotenv.2021.150376
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A portion of those infected with SARS-CoV-2 shed the virus and its genetic material in respiratory fluids, saliva, urine, and stool, thus giving the potential to monitor for infections via wastewater. Wastewater surveillance efforts to date have largely assumed that stool shedding has been the primary source of SARS-CoV-2 RNA signal; however, there are increasing questions about the possible contribution of other shedding routes, with implica-tions for wastewater surveillance design and feasibility. In this study we used clinical SARS-CoV-2 RNA shedding data and a Monte Carlo framework to assess the relative contribution of various shedding routes on SARS-CoV-2 RNA loads in wastewater. Stool shedding dominated total SARS-CoV-2 RNA load for community-level surveil-lance, with mean contributions more than two orders of magnitude greater than other shedding routes. How-ever, RNA loads were more nuanced when considering building-level monitoring efforts designed to identify a single infected individual, where any shedding route could plausibly contribute a detectable signal. The greatest source of model variability was viral load in excreta, suggesting that future modeling efforts may be improved by incorporating specific modeling scenarios with precise SARS-CoV-2 shedding data, and beyond that wastewater surveillance must continue to account for large variability during data analysis and reporting. Importantly, the findings imply that wastewater surveillance at finer spatial scales is not entirely dependent on shedding via feces for sensitive detection of infections thus enlarging the potential use cases of wastewater as a non-intrusive surveillance methodology. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Tracking SARS-CoV-2 RNA through the Wastewater Treatment Process
    Ali, Hala Abu
    Yaniv, Karin
    Bar-Zeev, Edo
    Chaudhury, Sanhita
    Shagan, Marilou
    Lakkakula, Satish
    Ronen, Zeev
    Kushmaro, Ariel
    Nir, Oded
    ACS ES&T WATER, 2021, 1 (05): : 1161 - 1167
  • [22] Efficient detection of SARS-CoV-2 RNA in the solid fraction of wastewater
    Kitamura, Kouichi
    Sadamasu, Kenji
    Muramatsu, Masamichi
    Yoshida, Hiromu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 763
  • [23] Improved methods for the detection and quantification of SARS-CoV-2 RNA in wastewater
    Peinado, Beatriz
    Martinez-Garcia, Lorena
    Martinez, Francisco
    Nozal, Leonor
    Blanca Sanchez, Maria
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [24] The SARS-CoV-2 RNA interactome
    Lee, Sungyul
    Lee, Young-suk
    Choi, Yeon
    Son, Ahyeon
    Park, Youngran
    Lee, Kyung-Min
    Kim, Jeesoo
    Kim, Jong-Seo
    Kim, V. Narry
    MOLECULAR CELL, 2021, 81 (13) : 2838 - +
  • [25] Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal
    Tandukar, Sarmila
    Sthapit, Niva
    Thakali, Ocean
    Malla, Bikash
    Sherchan, Samendra P.
    Shakya, Bijay Man
    Shrestha, Laxman P.
    Sherchand, Jeevan B.
    Joshi, Dev Raj
    Lama, Bhupendra
    Haramoto, Eiji
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 824
  • [26] Faecal shedding models for SARS-CoV-2 RNA among hospitalised patients and implications for wastewater-based epidemiology
    Hoffmann, Till
    Alsing, Justin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (02) : 330 - 345
  • [27] Determinants of prolonged viral RNA shedding in hospitalized patients with SARS-CoV-2 infection
    Dezza, F. Cogliati
    Oliva, A.
    Cancelli, F.
    Savelloni, G.
    Valeri, S.
    Mauro, V.
    Calabretto, M.
    Russo, G.
    Venditti, M.
    Turriziani, O.
    Mastroianni, C. M.
    DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2021, 100 (02)
  • [28] Decay of RNA and infectious SARS-CoV-2 and murine hepatitis virus in wastewater
    Purves, Kevin
    Reynolds, Liam J.
    Sala-Comorera, Laura
    Martin, Niamh A.
    Dahly, Darren L.
    Meijer, Wim G.
    Fletcher, Nicola F.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 944
  • [29] An efficient method to enhance recovery and detection of SARS-CoV-2 RNA in wastewater
    Kumblathan, Teresa
    Liu, Yanming
    Qiu, Yuanyuan
    Pang, Lilly
    Hrudey, Steve E.
    Le, X. Chris
    Li, Xing -Fang
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 130 : 139 - 148
  • [30] Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics
    Jordan Peccia
    Alessandro Zulli
    Doug E. Brackney
    Nathan D. Grubaugh
    Edward H. Kaplan
    Arnau Casanovas-Massana
    Albert I. Ko
    Amyn A. Malik
    Dennis Wang
    Mike Wang
    Joshua L. Warren
    Daniel M. Weinberger
    Wyatt Arnold
    Saad B. Omer
    Nature Biotechnology, 2020, 38 : 1164 - 1167