Mechanotransduction in skin wound healing and scar formation: Potential therapeutic targets for controlling hypertrophic scarring

被引:24
|
作者
Yin, Jiayi
Zhang, Shiming
Yang, Chao
Wang, Yan
Shi, Bing
Zheng, Qian
Zeng, Ni [1 ]
Huang, Hanyao [1 ]
机构
[1] Sichuan Univ, State Key Lab Oral Dis, Chengdu, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2022年 / 13卷
基金
中国国家自然科学基金;
关键词
mechanotransduction; hypertrophic scar (HTS); wound healing; mechanical forces; signaling; signaling pathways; BETA-CATENIN STABILIZATION; CHEMOKINE REGULATION; BOTULINUM TOXIN; CELL-ADHESION; TGF-BETA; REPAIR; MIGRATION; YAP/TAZ; DIFFERENTIATION; ANGIOGENESIS;
D O I
10.3389/fimmu.2022.1028410
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Hypertrophic scarring (HTS) is a major source of morbidity after cutaneous injury. Recent studies indicate that mechanical force significantly impacts wound healing and skin regeneration which opens up a new direction to combat scarring. Hence, a thorough understanding of the underlying mechanisms is essential in the development of efficacious scar therapeutics. This review provides an overview of the current understanding of the mechanotransduction signaling pathways in scar formation and some strategies that offload mechanical forces in the wounded region for scar prevention and treatment.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] MicroRNAs involved in human skin burns, wound healing and scarring
    Siu, Man Ching
    Voisey, Joanne
    Zang, Tuo
    Cuttle, Leila
    WOUND REPAIR AND REGENERATION, 2023, 31 (04) : 439 - 453
  • [22] Identification of the potential targets for keloid and hypertrophic scar prevention
    Zhang, Lianbo
    Qin, Haiyan
    Wu, Zhuoxia
    Chen, Wanying
    Zhang, Guang
    JOURNAL OF DERMATOLOGICAL TREATMENT, 2018, 29 (06) : 600 - 605
  • [23] Angiogenic Potential of Skin Dermal Multipotent Cells for Therapeutic Wound Healing
    Shi, Chunmeng
    Zong, Zhaowen
    Liu, Zhijun
    Ran, Xinze
    Xu, Hui
    Su, Yongping
    Cheng, Tainmin
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2010, 30 (11) : E278 - E278
  • [24] Akt-mediated mechanotransduction in murine fibroblasts during hypertrophic scar formation
    Paterno, Josemaria
    Vial, Ivan N.
    Wong, Victor W.
    Rustad, Kristine C.
    Sorkin, Michael
    Shi, Yubin
    Bhatt, Kirit A.
    Thangarajah, Hariharan
    Glotzbach, Jason P.
    Gurtner, Geoffrey C.
    WOUND REPAIR AND REGENERATION, 2011, 19 (01) : 49 - 58
  • [25] Clinical study on the role of LncRNA STX17-AS1 in wound healing and hypertrophic scar formation
    Wang, Wendi
    Liu, Man
    Li, Xiaobing
    Liu, Guangjing
    Wang, Chejiang
    INTERNATIONAL WOUND JOURNAL, 2024, 21 (02)
  • [26] Notch signal deficiency alleviates hypertrophic scar formation after wound healing through the inhibition of inflammation
    He, Ting
    Bai, Xiaozhi
    Jing, Jing
    Liu, Yang
    Wang, Hongtao
    Zhang, Wanfu
    Li, Xiaoqiang
    Li, Yan
    Wang, Luxu
    Xie, Songtao
    Hu, Dahai
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2020, 682
  • [27] Wound natural healing in treatment of tumor-like hypertrophic scar
    Han, Tong
    Lin, De-Feng
    Jiang, Hua
    ANAIS BRASILEIROS DE DERMATOLOGIA, 2017, 92 (04) : 474 - 477
  • [28] LOSS OF NEUTROPHIL ELASTASE LEADS TO SLOWER WOUND CLOSURE, BUT LESS SCAR FORMATION IN MOUSE SKIN WOUND HEALING
    Okabe, K.
    Kubota, Y.
    Shimizu, R.
    Kishi, K.
    WOUND REPAIR AND REGENERATION, 2013, 21 (01) : A4 - A4
  • [29] MicroRNA as Therapeutic Targets for Chronic Wound Healing
    Mulholland, Eoghan J.
    Dunne, Nicholas
    McCarthy, Helen O.
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2017, 8 : 46 - 55
  • [30] Screening of novel therapeutic targets in wound healing
    Jacobi, C.
    Goebb, M.
    Huber, R.
    Ludwig, R. J.
    Hundt, J. E.
    EXPERIMENTAL DERMATOLOGY, 2021, 30 (03) : E112 - E112