Cyclability in k-connected K1,4-free graphs

被引:1
|
作者
Flandrin, Evelyne [1 ]
Gyori, Ervin [2 ]
Li, Hao [1 ,3 ]
Shu, Jinlong [4 ]
机构
[1] Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, France
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[4] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
Cyclability; Subset of vertices; K-1; K-4-free graph; k-connected graph; THEOREM;
D O I
10.1016/j.disc.2010.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that if G is a k-connected K-1,K-4-free graph and S is a subset of vertices such that k >= 3 and vertical bar S vertical bar <= 2k then G has a cycle containing S. A similar result is obtained when restricting the k-connectivity assumption to the subset S. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2735 / 2741
页数:7
相关论文
共 50 条
  • [31] Removable edges in a k-connected graph and a construction method for k-connected graphs
    Su, Jianji
    Guo, Xiaofeng
    Xu, Liqiong
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3161 - 3165
  • [32] Note on the longest paths in {K1,4, K1,4 + e}-free graphs
    Fang Duan
    Guo Ping Wang
    Acta Mathematica Sinica, English Series, 2012, 28 : 2501 - 2506
  • [33] Note on the Longest Paths in {K1,4,K1,4+e}-free Graphs
    Fang DUAN
    Guo Ping WANG
    Acta Mathematica Sinica,English Series, 2012, (12) : 2501 - 2506
  • [34] Sufficient conditions for k-connected graphs and k-leaf-connected graphs
    An, Yonghong
    Zhang, Guizhi
    FILOMAT, 2024, 38 (18) : 6601 - 6608
  • [35] On minimally rainbow k-connected graphs
    Schiermeyer, Ingo
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) : 702 - 705
  • [36] Algebraic connectivity of k-connected graphs
    Steve Kirkland
    Israel Rocha
    Vilmar Trevisan
    Czechoslovak Mathematical Journal, 2015, 65 : 219 - 236
  • [37] SPANNING TREES WITH A BOUNDED NUMBER OF BRANCH VERTICES IN A K1,4-FREE GRAPH
    Dang Dinh Hanh
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 1195 - 1202
  • [38] Wiener Index of k-Connected Graphs
    Qin, Xiang
    Zhao, Yanhua
    Wu, Baoyindureng
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (04)
  • [39] FORWARDING INDEXES OF K-CONNECTED GRAPHS
    HEYDEMANN, MC
    MEYER, JC
    OPATRNY, J
    SOTTEAU, D
    DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 287 - 296
  • [40] A result on quasi k-connected graphs
    Ying-qiu Yang
    Applied Mathematics-A Journal of Chinese Universities, 2015, 30 : 245 - 252