Cyclability in k-connected K1,4-free graphs

被引:1
|
作者
Flandrin, Evelyne [1 ]
Gyori, Ervin [2 ]
Li, Hao [1 ,3 ]
Shu, Jinlong [4 ]
机构
[1] Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, France
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[4] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
Cyclability; Subset of vertices; K-1; K-4-free graph; k-connected graph; THEOREM;
D O I
10.1016/j.disc.2010.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that if G is a k-connected K-1,K-4-free graph and S is a subset of vertices such that k >= 3 and vertical bar S vertical bar <= 2k then G has a cycle containing S. A similar result is obtained when restricting the k-connectivity assumption to the subset S. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2735 / 2741
页数:7
相关论文
共 50 条
  • [1] Spanning 3-ended trees in k-connected K1,4-free graphs
    CHEN Yuan
    CHEN GuanTao
    HU ZhiQuan
    ScienceChina(Mathematics), 2014, 57 (08) : 1579 - 1586
  • [2] Spanning 3-ended trees in k-connected K1,4-free graphs
    Yuan Chen
    GuanTao Chen
    ZhiQuan Hu
    Science China Mathematics, 2014, 57 : 1579 - 1586
  • [3] Spanning 3-ended trees in k-connected K 1,4-free graphs
    Chen Yuan
    Chen GuanTao
    Hu ZhiQuan
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1579 - 1586
  • [4] Path Cover in K1,4-Free Graphs
    Mingda LIU
    Xiaodong CHEN
    Mingchu LI
    JournalofMathematicalResearchwithApplications, 2019, 39 (03) : 315 - 320
  • [5] On hamiltonian connectedness of K1,4-free graphs
    Li, MC
    DISCRETE MATHEMATICS, 2000, 216 (1-3) : 279 - 285
  • [6] Pancyclicity mod k of claw-free graphs and K1,4-free graphs
    Cai, XT
    Shreve, WE
    DISCRETE MATHEMATICS, 2001, 230 (1-3) : 113 - 118
  • [7] Spanning trees with at most k leaves in K1,4-free graphs
    Kyaw, Aung
    DISCRETE MATHEMATICS, 2011, 311 (20) : 2135 - 2142
  • [8] ON THE CYCLABILITY OF K-CONNECTED (K+1)-REGULAR GRAPHS
    HOLTON, DA
    PLUMMER, MD
    ARS COMBINATORIA, 1987, 23 : 37 - 55
  • [9] Spanning trees with at most 3 leaves in K1,4-free graphs
    Kyaw, Aung
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6146 - 6148
  • [10] Vertex-disjoint K1 + (K1 ∪ K2) in K1,4-free graphs with minimum degree at least four
    Yun Shu Gao
    Qing Song Zou
    Acta Mathematica Sinica, English Series, 2014, 30 : 661 - 674