Shortest paths in matrix multiplication time

被引:0
|
作者
Sankowski, P [1 ]
机构
[1] Warsaw Univ, Inst Informat, PL-02097 Warsaw, Poland
来源
ALGORITHMS - ESA 2005 | 2005年 / 3669卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we present an (O) over tilde (Wn(w)) time algorithm solving single source shortest path problem in graphs with integer weights from the set {-W,..., 0,..., W}, where omega < 2.376 is the matrix multiplication exponent. For dense graphs with small edge weights, this result improves upon the algorithm of Goldberg that works in (O) over tilde (mn(0.5) log W) time, and the Bellman-Ford algorithm that works in O(nm) time.
引用
收藏
页码:770 / 778
页数:9
相关论文
共 50 条
  • [11] Distributed Exact Shortest Paths in Sublinear Time
    Elkin, Michael
    JOURNAL OF THE ACM, 2020, 67 (03)
  • [12] On the Complexity of Time-Dependent Shortest Paths
    Foschini, Luca
    Hershberger, John
    Suri, Subhash
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 327 - 341
  • [13] Shortest Two Disjoint Paths in Polynomial Time
    Bjorklund, Andreas
    Husfeldt, Thore
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I, 2014, 8572 : 211 - 222
  • [14] SHORTEST-PATH PROBLEM IS NOT HARDER THAN MATRIX MULTIPLICATION
    ROMANI, F
    INFORMATION PROCESSING LETTERS, 1980, 11 (03) : 134 - 136
  • [15] On the Complexity of Time-Dependent Shortest Paths
    Luca Foschini
    John Hershberger
    Subhash Suri
    Algorithmica, 2014, 68 : 1075 - 1097
  • [16] SHORTEST TWO DISJOINT PATHS IN POLYNOMIAL TIME
    Bjorklun, Andreas
    Husfeldt, Thore
    SIAM JOURNAL ON COMPUTING, 2019, 48 (06) : 1698 - 1710
  • [18] External matrix multiplication and all-pairs shortest path
    Sibeyn, JF
    INFORMATION PROCESSING LETTERS, 2004, 91 (02) : 99 - 106
  • [19] Distributed Exact Shortest Paths in Sublinear Time
    Elkin, Michael
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 757 - 770
  • [20] On the Complexity of Time-Dependent Shortest Paths
    Foschini, Luca
    Hershberger, John
    Suri, Subhash
    ALGORITHMICA, 2014, 68 (04) : 1075 - 1097