Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation

被引:26
|
作者
Byvank, T. [1 ]
Banasek, J. T. [1 ]
Potter, W. M. [1 ]
Greenly, J. B. [1 ]
Seyler, C. E. [1 ]
Kusse, B. R. [1 ]
机构
[1] Cornell Univ, Lab Plasma Studies, 438 Rhodes Hall,136 Hoy Rd, Ithaca, NY 14853 USA
关键词
ASTROPHYSICS; LASERS;
D O I
10.1063/1.5003777
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We experimentally measure the effects of an applied axial magnetic field (B-z) on laboratory plasma jets and compare the experimental results with numerical simulations using an extended magnetohydrodynamics code. A 1 MA peak current, 100 ns rise time pulse power machine is used to generate the plasma jet. On application of the axial field, we observe on-axis density hollowing and a conical formation of the jet using interferometry, compression of the applied B-z using magnetic B-dot probes, and azimuthal rotation of the jet using Thomson scattering. Experimentally, we find densities less than or similar to 5 x 10(17) cm(-3) on-axis relative to jet densities of greater than or similar to 3 x 10(18) cm(-3). For aluminum jets, 6.5 +/- 0.5 mm above the foil, we find on-axis compression of the applied 1.0 +/- 0.1 T B-z to a total 2.4 +/- 0.3 T, while simulations predict a peak compression to a total 3.4 T at the same location. On the aluminum jet boundary, we find ion azimuthal rotation velocities of 15-20 km/s, while simulations predict 14 km/s at the density peak. We discuss possible sources of discrepancy between the experiments and simulations, including surface plasma on B-dot probes, optical fiber spatial resolution, simulation density floors, and 2D vs. 3D simulation effects. This quantitative comparison between experiments and numerical simulations helps elucidate the underlying physics that determines the plasma dynamics of magnetized plasma jets. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Magnetic Field Effects on Axis-Switching and Instabilities in Rectangular Plasma Jets
    Riley, Benjamin M.
    Girimaji, Sharath S.
    Richard, Jacques C.
    Lee, Kurnchul
    FLOW TURBULENCE AND COMBUSTION, 2009, 82 (03) : 375 - 390
  • [42] STABILITY OF A CONSTRICTED ARC IN AN APPLIED AXIAL MAGNETIC FIELD
    CHIN, R
    RESHOTKO, E
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1558 - &
  • [43] Magnetic Field Effects on Axis-Switching and Instabilities in Rectangular Plasma Jets
    Benjamin M. Riley
    Sharath S. Girimaji
    Jacques C. Richard
    Kurnchul Lee
    Flow, Turbulence and Combustion, 2009, 82
  • [44] Analytical solutions for the current driven by a rotating magnetic field in a cylindrical plasma with azimuthal field
    Watterson, Peter A.
    Journal of Plasma Physics, 1988, 40 (01) : 109 - 126
  • [45] Laboratory simulation of depolarization and deflection of plasma jets drifting across magnetic field in geoplasma background
    Zakharov, YP
    Wolowski, J
    Orishich, AM
    Eremin, AV
    Parys, P
    Woryna, E
    INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES, VOL II, PROCEEDINGS, 1999, : 97 - 98
  • [46] MAGNETIC FIELD CONFIGURATION IN CURRENT CARRYING PLASMA JETS
    SKVORTSOV, YV
    KOMELKOV, VS
    TSEREVIT.SS
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1964, 9 (06): : 746 - +
  • [47] One-dimensional magnetohydrodynamics of a cylindrical liner imploded by an azimuthal magnetic field and compressing an axial field
    Hamann, F.
    Combis, P.
    Videau, L.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [48] PLASMA DENSITY FLUCTUATIONS IN A MAGNETIC FIELD
    SALPETER, EE
    PHYSICAL REVIEW, 1961, 122 (06): : 1663 - &
  • [49] Numerical MHD Simulation of Laboratory Jets in a Toroidal Magnetic Field
    O. D. Toropina
    G. S. Bisnovatyi-Kogan
    S. G. Moiseenko
    Astronomy Reports, 2023, 67 : 3 - 14
  • [50] Numerical MHD Simulation of Laboratory Jets in a Toroidal Magnetic Field
    Toropina, O. D.
    Bisnovatyi-Kogan, G. S.
    Moiseenko, S. G.
    ASTRONOMY REPORTS, 2023, 67 (01) : 3 - 14