Inwards propagating waves in a limit cycle medium

被引:12
|
作者
Rabinovitch, A [1 ]
Gutman, M [1 ]
Aviram, I [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1103/PhysRevLett.87.084101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of a novel inwards propagating wave motion is demonstrated in a limit-cycle medium both for the FitzHugh-Nagumo and for modified Chernyak-Starobin-Cohen reaction-diffusion systems. The waves (pulses) are seen to be moving "backwards," that is, towards the point where the triggering pulse was initiated, instead of the regular propagation away from the origin. The feasibility of the phenomenon and some of its features are analyzed.
引用
收藏
页码:84101 / 1
页数:4
相关论文
共 50 条
  • [21] LIMIT-CYCLE MODEL FOR BRAIN WAVES
    KAISER, F
    PHYSICS LETTERS A, 1977, 62 (01) : 63 - 64
  • [22] VARIANCE OF PHASE FLUCTUATIONS OF WAVES PROPAGATING THROUGH A RANDOM MEDIUM
    CHU, NC
    KONG, JA
    YUEH, HA
    NGHIEM, SV
    FLEISCHMAN, JG
    AYASLI, S
    SHIN, RT
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1992, 6 (02) : 169 - 197
  • [23] Total reflection of waves propagating from a rare isotropic medium to a dense anisotropic medium
    Jen, YJ
    Cheng, YR
    OPTICS COMMUNICATIONS, 2004, 233 (4-6) : 271 - 275
  • [24] Abnormal total external reflection for waves propagating from an isotropic medium to an anisotropic medium
    Lin, CL
    Wu, JJ
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (01) : 24 - 35
  • [25] TIME-HARMONIC WAVES IN A STRATIFIED MEDIUM PROPAGATING IN DIRECTION OF LAYERING
    SUN, CT
    ACHENBAC.JD
    HERRMANN, G
    JOURNAL OF APPLIED MECHANICS, 1968, 35 (02): : 408 - &
  • [26] SUPERSATURATION OF COMPLEX-AMPLITUDE FLUCTUATIONS OF WAVES PROPAGATING IN A RANDOM MEDIUM
    WENZEL, AR
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1983, 74 (03): : 1021 - 1024
  • [27] Nonlinear saturation in acoustic waves propagating in a medium with frequency dependent gain
    Khokhlova, VA
    Sapozhnikov, OA
    Kashcheeva, SS
    Lotton, P
    Gusev, VE
    Job, C
    Bruneau, M
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 2000, 64 (12): : 2334 - 2337
  • [28] Spectral properties of waves propagating in a fractured medium: Dynamic and static cases
    Shamina, OG
    Palenov, AM
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2002, 38 (09) : 738 - 744
  • [29] DISCRETE AND CONTINUOUS CASES FOR THE PROBLEM OF PROPAGATING WAVES FOR INHOMOGENEOUS MEDIUM WITH MEMORY
    Tsaritsanskiy, A. N.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (03): : 489 - 503
  • [30] EQUATIONS FOR MOMENT FUNCTIONS OF WAVES PROPAGATING IN A MEDIUM WITH EXTENDED RANDOM IRREGULARITIES
    SAICHEV, AI
    SLAVINSKIJ, MM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1985, 28 (01): : 75 - 82