Using HEK293T Expression System to Study Photoactive Plant Cryptochromes

被引:21
|
作者
Yang, Liang [1 ,2 ]
Wang, Xu [2 ,3 ]
Deng, Weixian [1 ,2 ]
Mo, Weiliang [1 ]
Gao, Jie [1 ]
Liu, Qing [2 ]
Zhang, Chuanyu [2 ]
Wang, Qin [1 ,3 ]
Lin, Chentao [3 ]
Zuo, Zecheng [1 ,2 ]
机构
[1] Jilin Univ, Coll Plant Sci, Lab Soil & Plant Mol Genet, Changchun 130023, Peoples R China
[2] Fujian Agr & Forestry Univ, Basic Forestry & Prote Res Ctr, Haixia Inst Sci & Technol, Fuzhou, Peoples R China
[3] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA USA
来源
基金
美国国家科学基金会;
关键词
cryptochrome; expression system; linear DNA; photo-biochemical activity; HEK293T; BLUE-LIGHT PHOTORECEPTORS; MAMMALIAN-CELLS; SIGNAL-TRANSDUCTION; ARABIDOPSIS CRY2; FLORAL INITIATION; DNA PHOTOLYASE; COP1; ACTIVITY; PLASMID DNA; TRANSFECTION; PROTEIN;
D O I
10.3389/fpls.2016.00940
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cryptochromes are photolyase-like blue light receptors that are conserved in plants and animals. Although the light-dependent catalytic mechanism of photolyase is well studied, the photochemical mechanism of cryptochromes remains largely unknown. Lack of an appropriate protein expression system to obtain photochemically active cryptochrome holoproteins is a technical obstacle for the study of plant cryptochromes. We report here an easy-to-use method to express and study Arabidopsis cryptochrome in HEK293T cells. Our results indicate that Arabidopsis cryptochromes expressed in HEK293T are photochemically active. We envision a broad use of this method in the functional investigation of plant proteins, especially in the large-scale analyses of photochemical activities of cryptochromes such as blue light-dependent protein protein interactions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Effects of Nanosilver on Antioxidant and Xenobiotic Response Pathways in HEK293T Cells
    Cameron, Shana
    Hosseinian, Farah
    Willmore, William
    FREE RADICAL BIOLOGY AND MEDICINE, 2017, 112 : 20 - 20
  • [32] Palytoxin interactions with endogenous Na/K pumps in HEK293T cells
    Artigas, P
    Gadsby, DC
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 38A - 38A
  • [33] HEK293T cell lines defective for O-linked glycosylation
    Termini, James M.
    Silver, Zachary A.
    Connor, Bryony
    Antonopoulos, Aristotelis
    Haslam, Stuart M.
    Dell, Anne
    Desrosiers, Ronald C.
    PLOS ONE, 2017, 12 (06):
  • [34] Enhanced cholesterol efflux with adiponectin and its receptors in HEK293T cells
    Kitajima, Ken
    Miura, Shin-Ichiro
    Yamauchi, Toshimasa
    Uehara, Yoshinari
    Kadowaki, Takashi
    Saku, Keijiro
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 51 (10) : A320 - A321
  • [35] Adiponectin and its receptors increased cholesterol efflux in HEK293T cells
    Kitajima, Ken
    Miura, Shin-ichiro
    Yamauchi, Toshimasa
    Uehara, Yoshinari
    Kadowaki, Takashi
    Saku, Keijiro
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2007, 27 (06) : E103 - E103
  • [36] ENABILING LENTIVIRUS FOR IN-VIVO APPLICATIONS: DEMONSTRATING PRODUCTIVITY IN HEK293 VS. HEK293T CELL LINES
    Fernandez, L.
    Ercolino, M.
    Bose, J.
    Morgan, J.
    Huynh, J.
    CYTOTHERAPY, 2024, 26 (06) : S209 - S209
  • [37] Optimization of Experimental Variables Influencing Apoptosome Biosensor in HEK293T Cells
    Oladzad, Azarakhsh
    Nikkhah, Maryam
    Hosseinkhani, Saman
    SENSORS, 2020, 20 (06)
  • [38] Subproteome of Thromboxane A2 Receptor in Transfected HEK293T Cells
    Li, Min
    Stefani, Enrico
    Toro, Ligia
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 518A - 518A
  • [39] Analysis of Wnt signaling β-catenin spatial dynamics in HEK293T cells
    Tan, Chin Wee
    Gardiner, Bruce S.
    Hirokawa, Yumiko
    Smith, David W.
    Burgess, Antony W.
    BMC SYSTEMS BIOLOGY, 2014, 8
  • [40] Extracellular Nanovesicle Enhanced Gene Transfection Using Polyethyleneimine in HEK293T Cells and Zebrafish Embryos
    Zhang, Zhenzhen
    Wen, Kai
    Zhang, Chao
    Laroche, Fabrice
    Wang, Zhenglong
    Zhou, Qiang
    Liu, Zunfeng
    Abrahams, Jan Pieter
    Zhou, Xiang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8 (08):