Thermal properties of biomass-based form-stable phase change material for latent heat thermal energy storage

被引:22
|
作者
Sun, Yafen [1 ]
Zhang, Nan [1 ]
Pan, Xiyu [1 ]
Zhong, Wei [1 ]
Qiu, Bokai [1 ]
Cai, Yuxuan [1 ]
Yuan, Yanping [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
delignified wood; fatty acids; form-stable phase change material; thermal energy storage; CARBON NANOTUBES; COMPOSITE; ACID; WOOD; FABRICATION; PARAFFIN; BEHAVIOR; MIXTURE;
D O I
10.1002/er.7122
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Considering platane wood as a kind of natural biomass building material, it features a structure with abundant pores and lightweight, which can be used as a supporting material to prevent the liquid leakage of phase change materials (PCMs). In this work, the lignin of the platane wood is removed, and then, a series of the form-stable PCMs (FSPCMs) are prepared by the vacuum impregnation method, for which implemented the delignified wood (DW) as a supporting material and four kinds of fatty acid (FA) as PCMs. The microstructure and thermophysical characteristics of the FSPCMs are investigated. Furthermore, the results show that DW preserves the inherent porous structure of the platane wood, and the specific surface area and total pore volume of DW are greater than those of the platane wood. Thus, the DW adsorbs more PCMs than platane wood by the physical connection. The maximum impregnation rate of FA in the DW is as high as 76 wt%. There is a little variation in the phase change temperature of DW/FA FSPCMs compared with that of the FA, while the latent heat of DW/FA FSPCMs is almost consistent with the content of FA in the composite. Thermogravimetric analysis results show that DW/FA FSPCMs present good thermal stability. Moreover, DW/FA FSPCMs have good thermal reliability after 500 thermal cycles. Therefore, the prepared DW/FA FSPCMs show a potential application prospect in the thermal energy storage system.
引用
收藏
页码:20372 / 20383
页数:12
相关论文
共 50 条
  • [21] Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications
    Wu, Weixiong
    Wu, Wei
    Wang, Shuangfeng
    APPLIED ENERGY, 2019, 236 : 10 - 21
  • [22] Palmitic Acid-Stearic Acid/Expanded Graphite as Form-Stable Composite Phase-Change Material for Latent Heat Thermal Energy Storage
    Zhou, Dongyi
    Zhou, Yuhong
    Yuan, Jiawei
    Liu, Yicai
    JOURNAL OF NANOMATERIALS, 2020, 2020
  • [23] Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage
    Chuanchang Li
    Xinke Peng
    Jianjun He
    Jian Chen
    International Journal of Minerals, Metallurgy and Materials, 2023, 30 : 1835 - 1845
  • [24] Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage
    Liu, Peng
    Gu, Xiaobin
    Bian, Liang
    Peng, Lihua
    He, Huichao
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (01) : 359 - 368
  • [25] Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage
    Li, Chuanchang
    Peng, Xinke
    He, Jianjun
    Chen, Jian
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2023, 30 (09) : 1835 - 1845
  • [26] Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage
    Chuanchang Li
    Xinke Peng
    Jianjun He
    Jian Chen
    International Journal of Minerals,Metallurgy and Materials, 2023, (09) : 1835 - 1845
  • [27] Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application
    Lee, Johnathan Joo Cheng
    Sugiarto, Sigit
    Ong, Pin Jin
    Soo, Xiang Yun Debbie
    Ni, Xiping
    Luo, Ping
    Hnin, Yu Yu Ko
    See, Josephine Si Yu
    Wei, Fengxia
    Zheng, Rongyan
    Wang, Pei
    Xu, Jianwei
    Loh, Xian Jun
    Kai, Dan
    Zhu, Qiang
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [28] High density polyethylene/paraffin composites as form-stable phase change material for thermal energy storage
    Kaygusuz, K.
    Sari, A.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2007, 29 (03) : 261 - 270
  • [29] Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage
    Wang, Yi
    Xia, Tian Dong
    Zheng, Han
    Feng, Hui Xia
    ENERGY AND BUILDINGS, 2011, 43 (09) : 2365 - 2370
  • [30] Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage
    Shen, Qiang
    Ouyang, Jing
    Zhang, Yi
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2017, 146 : 14 - 22