Change Detection in Semantic Level for SAR Images

被引:0
|
作者
Mao, Tianqi [1 ]
Liu, Wei [1 ]
Zhao, Yongjun [1 ]
Huang, Jie [1 ]
机构
[1] China Natl Digital Syst Engn & Technol R&D Ctr, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
synthetic aperture radar; change detection; auto-encoder; semantic; bag of visual words;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering that the traditional change detection algorithms only focus on extracting the change area but ignore the change content identification, a novel change detection framework for synthetic aperture radar (SAR) images is proposed. The framework integrates the merits of unsupervised and supervised learning to detect changes in semantic level. First, the residual convolutional auto-encoder (RCAE) is designed to convert SAR image slices to the histogram representation. Then, we calculate the difference vectors and extract the change area by their norms. Finally, we classify the difference vectors of change region and identify the content of change. Experimental results indicate that the proposed method achieves significantly performance improvement over existing algorithms.
引用
收藏
页码:633 / 636
页数:4
相关论文
共 50 条
  • [41] Change detection of Polarimetric SAR images based on the KummerU Distribution
    Chen Quan
    Zou Pengfei
    Li Zhen
    Zhang Ping
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [42] A multiobjective fuzzy clustering method for change detection in SAR images
    Li, Hao
    Gong, Maoguo
    Wang, Qiao
    Liu, Jia
    Su, Linzhi
    APPLIED SOFT COMPUTING, 2016, 46 : 767 - 777
  • [43] Sparsity-Driven Change Detection in Multitemporal SAR Images
    Nar, Fatih
    Ozgur, Atilla
    Saran, Ayse Nurdan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (07) : 1032 - 1036
  • [44] Deep Despeckling of SAR Images to Improve Change Detection Performance
    Ihmeida, Mohamed
    Shahzad, Muhammad
    ARTIFICIAL INTELLIGENCE XL, AI 2023, 2023, 14381 : 115 - 126
  • [45] Practical Considerations in Unsupervised Change Detection Using SAR Images
    Ayhan, Bulent
    Kwan, Chiman
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 334 - 339
  • [46] Improving change detection methods of SAR images using fractals
    Aghababaee, H.
    Amini, J.
    Tzeng, Y. C.
    SCIENTIA IRANICA, 2013, 20 (01) : 15 - 22
  • [47] A Site Model Based Change Detection method for SAR Images
    Wang, Wei
    Shi, Jianhua
    Zhao, Lingjun
    Yan, Xingwei
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 738 - 742
  • [48] Change Detection in SAR Images Based on Progressive Nonlocal Theory
    Zhuang, Huifu
    Fan, Hongdong
    Deng, Kazhong
    Zhang, Kefei
    Wang, Xuesong
    Wang, Mengmeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] Coastline Detection from SAR Images by Level Set Model
    Cerimele, Maria Mercede
    Cinque, Luigi
    Cossu, Rossella
    Galiffa, Roberta
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 364 - +
  • [50] REGION-BASED CHANGE DETECTION FOR POLARIMETRIC SAR IMAGES
    Zhang, Xiuting
    Yin, Junjun
    Yang, Jian
    Guo, Xianyu
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 675 - 678