Decompositions for edge-coloring join graphs and cobipartite graphs

被引:11
|
作者
Machado, Raphael C. S. [1 ]
de Figueiredo, Celina M. N. [1 ]
机构
[1] Univ Fed Rio Janeiro, COPPE, Rio De Janeiro, Brazil
关键词
Edge-coloring; Chromatic index; Join graph; Cobipartite graph; Core; CHROMATIC INDEX; NP-COMPLETENESS; THEOREM;
D O I
10.1016/j.dam.2009.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge-coloring is an association of colors to the edges of a graph, in such a way that no pair of adjacent edges receive the same color. A graph G is Class 1 if it is edge-colorable with a number of colors equal to its maximum degree Delta(G). To determine whether a graph G is Class 1 is NP-complete [I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718-720]. First, we propose edge-decompositions of a graph G with the goal of edge-coloring G with Delta(G) colors. Second, we apply these decompositions for identifying new subsets of Class I join graphs and cobipartite graphs. Third, the proposed technique is applied for proving that the chromatic index of a graph is equal to the chromatic index of its semi-core, the subgraph induced by the maximum degree vertices and their neighbors. Finally, we apply these decomposition tools to a classical result [A.J.W. Hilton, Z. Cheng, The chromatic index of a graph whose core has maximum degree 2, Discrete Math. 101 (1992) 135-147] that relates the chromatic index of a graph to its core, the subgraph induced by the maximum degree vertices. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1336 / 1342
页数:7
相关论文
共 50 条
  • [41] KALEIDOSCOPIC EDGE-COLORING OF COMPLETE GRAPHS AND r-REGULAR GRAPHS
    Li, Xueliang
    Zhu, Xiaoyu
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 881 - 888
  • [42] List Edge-Coloring and Total Coloring in Graphs of Low Treewidth
    Bruhn, Henning
    Lang, Richard
    Stein, Maya
    JOURNAL OF GRAPH THEORY, 2016, 81 (03) : 272 - 282
  • [43] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Dai-Qiang Hu
    Jian-Liang Wu
    Donglei Yang
    Xin Zhang
    Graphs and Combinatorics, 2017, 33 : 945 - 953
  • [44] EFFICIENT VERTEX-COLORING AND EDGE-COLORING OF OUTERPLANAR GRAPHS
    PROSKUROWSKI, A
    SYSLO, MM
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (01): : 131 - 136
  • [45] A SIMPLE AND FAST HEURISTIC ALGORITHM FOR EDGE-COLORING OF GRAPHS
    Fiol, M. A.
    Vilaltella, J.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (03) : 263 - 272
  • [46] LINEAR ALGORITHMS FOR EDGE-COLORING TREES AND UNICYCLIC GRAPHS
    MITCHELL, S
    HEDETNIEMI, S
    INFORMATION PROCESSING LETTERS, 1979, 9 (03) : 110 - 112
  • [47] OPTIMAL STRONG PARITY EDGE-COLORING OF COMPLETE GRAPHS
    Bunde, David P.
    Milans, Kevin
    West, Douglas B.
    Wu, Hehui
    COMBINATORICA, 2008, 28 (06) : 625 - 632
  • [48] On (s, t)-relaxed strong edge-coloring of graphs
    Dan He
    Wensong Lin
    Journal of Combinatorial Optimization, 2017, 33 : 609 - 625
  • [49] Strong edge-coloring of cubic bipartite graphs: A counterexample
    Cranston, Daniel W.
    DISCRETE APPLIED MATHEMATICS, 2022, 321 : 258 - 260
  • [50] The equitable edge-coloring of series-parallel graphs
    Song, Huimin
    Wu, Jianliang
    Liu, Guizhen
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 457 - +