Weinhold length in an isentropic ideal and quasi-ideal gas

被引:7
|
作者
Santoro, M [1 ]
机构
[1] Portland State Univ, Dept Math & Stat, Portland, OR 97207 USA
关键词
D O I
10.1016/j.chemphys.2004.10.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we study thermodynamic length of an isentropic ideal and quasi-ideal gas using Weinhold metric in a two-dimensional state space. We give explicit relation between length at constant entropy and work. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 272
页数:4
相关论文
共 50 条
  • [21] Quasi-ideal Ehresmann transversals: The spined product structure
    Kong, Xiangjun
    Wang, Pei
    Tang, Jian
    OPEN MATHEMATICS, 2021, 19 (01): : 77 - 86
  • [22] Acetonitrile real gas phase behavior from quasi-ideal gas to nanodroplets: A microscopical view
    Martinez, Jose M.
    Hernandez-Cobos, Jorge
    Pappalardo, Rafael R.
    Marcos, Enrique Sanchez
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (19):
  • [23] Quasi-ideal transversals of abundant semigroups and spined products
    Jehan Al-Bar
    James Renshaw
    Semigroup Forum, 2011, 83 : 522 - 537
  • [24] ERROR ANALYSIS OF A GONIOMETER WITH A QUASI-IDEAL COORDINATE SYSTEM
    MEITIN, VA
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1992, 59 (04): : 233 - 236
  • [25] Quasi-ideal feedback-loop supercurrent diode
    De Simoni, Giorgio
    Giazotto, Francesco
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [26] The product of quasi-ideal adequate transversals of an abundant semigroup
    Kong, Xiangjun
    Wang, Pei
    SEMIGROUP FORUM, 2011, 83 (02) : 304 - 312
  • [27] STRUCTURAL THEOREMS FOR (m,n)-QUASI-IDEAL SEMIGROUPS
    Protic, Petar V.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (02): : 147 - 156
  • [28] Fundamental Regular Semigroups with Quasi-ideal Regular *-Transversals
    Wang, Shou-Feng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (03) : 1067 - 1083
  • [29] The product of quasi-ideal refined generalised quasi-adequate transversals
    Kong, Xiangjun
    Wang, Pei
    Wu, Yonghong
    OPEN MATHEMATICS, 2019, 17 : 43 - 51