Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting

被引:23
|
作者
Diehl, A. [1 ]
Pelorosso, L. [1 ]
Delrieux, C. [2 ]
Saulo, C. [3 ]
Ruiz, J. [3 ]
Groeller, M. E. [4 ]
Bruckner, S. [5 ]
机构
[1] Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina
[2] South Natl Univ, Buenos Aires, DF, Argentina
[3] UMI IFAECI CNRS, DCAO FCEN UBA, CIMA CONICET UBA, Buenos Aires, DF, Argentina
[4] Vienna Univ Technol, Vienna, Austria
[5] Univ Bergen, N-5020 Bergen, Norway
关键词
DATA EXPLORATION; TIME-SERIES; VISUALIZATION; PATTERNS;
D O I
10.1111/cgf.12650
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Weather conditions affect multiple aspects of human life such as economy, safety, security, and social activities. For this reason, weather forecast plays a major role in society. Currently weather forecasts are based on Numerical Weather Prediction (NWP) models that generate a representation of the atmospheric flow. Interactive visualization of geo-spatial data has been widely used in order to facilitate the analysis of NWP models. This paper presents a visualization system for the analysis of spatio-temporal patterns in short-term weather forecasts. For this purpose, we provide an interactive visualization interface that guides users from simple visual overviews to more advanced visualization techniques. Our solution presents multiple views that include a timeline with geo-referenced maps, an integrated webmap view, a forecast operation tool, a curve-pattern selector, spatial filters, and a linked meteogram. Two key contributions of this work are the timeline with geo-referenced maps and the curve-pattern selector. The latter provides novel functionality that allows users to specify and search for meaningful patterns in the data. The visual interface of our solution allows users to detect both possible weather trends and errors in the weather forecast model. We illustrate the usage of our solution with a series of case studies that were designed and validated in collaboration with domain experts.
引用
收藏
页码:381 / 390
页数:10
相关论文
共 50 条
  • [21] Visual exploration of spatio-temporal relationships for scientific data
    Mehta, Sameep
    Parthasarathy, Srinivasan
    Machiraju, Raghu
    VAST 2006: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY, PROCEEDINGS, 2006, : 11 - +
  • [22] Visual interactive clustering and querying of spatio-temporal data
    Sourina, O
    Liu, DQ
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 968 - 977
  • [23] Visual exploration of spatio-temporal patterns in epidemiological data
    Mayala, B. K.
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2007, 12 : 195 - 196
  • [24] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [25] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [26] Weather extremes : A spatio-temporal perspectives
    Rathore, L. S.
    Pattanaik, D. R.
    Bran, S. C.
    MAUSAM, 2016, 67 (01): : 27 - 52
  • [27] Feature Selection on Spatio-Temporal Data for Solar Irradiance Forecasting
    Carranza-Garcia, Manuel
    Lara-Benitez, Pedro
    Maria Luna-Romera, Jose
    Riquelme, Jose C.
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 654 - 664
  • [28] GSTARX-GLS Model for Spatio-Temporal Data Forecasting
    Suhartono
    Wahyuningrum, Sri Rizqi
    Setiawan
    Akbar, Muhammad Sjahid
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 91 - 103
  • [29] DSTVis: toward better interactive visual analysis of Drones' spatio-temporal data
    Chen, Fengxin
    Yu, Ye
    Ni, Liangliang
    Zhang, Zhenya
    Lu, Qiang
    JOURNAL OF VISUALIZATION, 2024, 27 (04) : 623 - 638
  • [30] Spatio-temporal Crime Analysis and Forecasting on Twitter Data Using Machine Learning Algorithms
    Vivek M.
    Prathap B.R.
    SN Computer Science, 4 (4)