SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY

被引:7
|
作者
Jia, Sen [1 ]
Deng, Bin [1 ]
Jia, Xiuping [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
基金
中国国家自然科学基金;
关键词
Hyperspectral imagery; superpixel; sparse representation-based classification; RECOGNITION;
D O I
10.1109/IGARSS.2016.7729854
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse representation-based classification (SRC) assigns a test sample to the class with minimal representation error via a sparse linear combination of all the training samples, which has successfully been applied to hyperspectral imagery (HSI). Meanwhile, spatial information, that means the adjacent pixels belong to the same class with a high probability, is a valuable complement to the spectral information. In this paper, we propose an efficient method for HSI classification by using superpixel based sparse representation-based classification (SP-SRC). One superpixel can be regarded as a small region consisting of a number of pixels with similar spectral characteristics. The novel method utilizes superpixel to exploit spatial information which can greatly improve classification accuracy. Specifically, SRC is firstly used to classifier the HSI. Then an efficient segmentation algorithm is adopted to divide the HSI into disjoint superpixels. Finally, each superpixel is used to fuse the results of the SRC classifier. Experimental results on the widely-used Indian Pines hyperspectral imagery have shown that the proposed SP-SRC approach could achieve better performance than the pixel-wise SRC method.
引用
收藏
页码:3302 / 3305
页数:4
相关论文
共 50 条
  • [41] A Sparse Representation-Based Sample Pseudo-Labeling Method for Hyperspectral Image Classification
    Cui, Binge
    Cui, Jiandi
    Lu, Yan
    Guo, Nannan
    Gong, Maoguo
    REMOTE SENSING, 2020, 12 (04)
  • [42] Superpixel Nonlocal Weighting Joint Sparse Representation for Hyperspectral Image Classification
    Zhang, Aizhu
    Pan, Zhaojie
    Fu, Hang
    Sun, Genyun
    Rong, Jun
    Ren, Jinchang
    Jia, Xiuping
    Yao, Yanjuan
    REMOTE SENSING, 2022, 14 (09)
  • [43] Domain Adaptive Sparse Representation-Based Classification
    Zhang, Heng
    Patel, Vishal M.
    Shekhar, Sumit
    Chellappa, Rama
    2015 11TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), VOL. 1, 2015,
  • [44] Sparse representation-based classification of mysticete calls
    1600, Acoustical Society of America (144):
  • [45] Hyperspectral Image Classification Based on Sparse Superpixel Graph
    Zhao, Yifei
    Yan, Fengqin
    REMOTE SENSING, 2021, 13 (18)
  • [46] Sparse Representation-Based Hyperspectral Image Classification Using Multiscale Superpixels and Guided Filter
    Dundar, Tugcan
    Ince, Taner
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (02) : 246 - 250
  • [47] DEEP MULTIMODAL SPARSE REPRESENTATION-BASED CLASSIFICATION
    Abavisani, Mahdi
    Patel, Vishal M.
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 773 - 777
  • [48] An adaptive kernel sparse representation-based classification
    Xuejun Wang
    Wenjian Wang
    Changqian Men
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 2209 - 2219
  • [49] Sparse representation-based classification of mysticete calls
    Guilment, Thomas
    Socheleau, Francois-Xavier
    Pastor, Dominique
    Vallez, Simon
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (03): : 1550 - 1563
  • [50] Multiple kernel sparse representation-based classification
    Chen, Si-Bao, 1807, Chinese Institute of Electronics (42):