Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon

被引:165
|
作者
Zolfaghari, Ghasem [2 ]
Esmaili-Sari, Abbas [2 ]
Anbia, Mansoor [1 ]
Younesi, Habibollah [2 ]
Amirmahmoodi, Shahram [1 ]
Ghafari-Nazari, Ali [3 ]
机构
[1] Iran Univ Sci & Technol, Fac Chem, Res Lab Nanoporous Mat, Tehran 16846, Iran
[2] Tarbiat Modares Univ, Fac Nat Resources & Marine Sci, Dept Environm, Noor, Mazandaran, Iran
[3] Loabiran Co, Res & Dev Grp, Shiraz, Iran
关键词
Lead; Mercury; Zn-OCMK-3; Taguchi method; Adsorption; ACTIVATED CARBON; PHENOLIC-COMPOUNDS; MOLECULAR-SIEVES; HEAVY-METALS; ADSORPTION; SORPTION; CADMIUM; MERCURY; WATER; ISOTHERMS;
D O I
10.1016/j.jhazmat.2011.06.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Using the Taguchi method, this study presents a systematic optimization approach for removal of lead (Pb) and mercury (Hg) by a nanostructure, zinc oxide-modified mesoporous carbon CMK-3 denoted as Zn-OCMK-3. CMK-3 was synthesized by using SBA-15 and then oxidized by nitric acid. The zinc oxide was loaded to the modified CMK-3 by the equilibrium adsorption of Zn(II) ions from aqueous solution followed by calcination to convert zinc nitrate to zinc oxide. The CMK-3 had porous structure and high specific surface area which can accommodate zinc oxide in a spreading manner, the zinc oxide connects to the carbon surface via oxygen atoms. The controllable factors such as agitation time, initial concentration, temperature, dose and pH of solution have been optimized. Under optimum conditions, the pollutant removal efficiency (PRE) was 97.25% for Pb(II) and 99% for Hg(II). The percentage contribution of each controllable factor was also determined. The initial concentration of pollutant is the most influential factor, and its value of percentage contribution is up to 31% and 43% for Pb and Hg, respectively. Our results show that the Zn-OCMK-3 is an effective nanoadsorbent for lead and mercury pollution remediation. Langmuir and Freundlich adsorption isotherms were used to model the equilibrium adsorption data for Pb(II) and Hg(II). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1046 / 1055
页数:10
相关论文
共 50 条
  • [31] Silica aerogels modified with mercapto functional groups used for Cu(II) and Hg(II) removal from aqueous solutions
    Standeker, Suzana
    Veronovski, Anja
    Novak, Zoran
    Knez, Zeljko
    DESALINATION, 2011, 269 (1-3) : 223 - 230
  • [32] Removal of Pb(II) from Aqueous Solutions by NiO Nanoparticles
    Khoshhesab, Zahra Monsef
    Hooshyar, Zari
    Sarfaraz, Mohammad
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2011, 41 (08) : 1046 - 1051
  • [33] Adsorption of Pb(II) and Hg(II) ions from aqueous single metal solutions by using surfactant-modified ostrich bone waste
    Amiri, Mohammad Javad
    Abedi-Koupai, Jahangir
    Eslamian, Sayed Saeid
    Arshadi, Mohammad
    DESALINATION AND WATER TREATMENT, 2016, 57 (35) : 16522 - 16539
  • [34] Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions
    Liu, Bingjie
    Lv, Xin
    Meng, Xianghong
    Yu, Guangli
    Wang, Dongfeng
    CHEMICAL ENGINEERING JOURNAL, 2013, 220 : 412 - 419
  • [35] Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose
    Kenawy, I. M.
    Hafez, M. A. H.
    Ismail, M. A.
    Hashem, M. A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 107 : 1538 - 1549
  • [36] Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite
    Ghassabzadeh, Hamid
    Torab-Mostaedi, Meisam
    Mohaddespour, Ahmad
    Maragheh, Mohammad Ghannadi
    Ahmadi, Seyyed Javad
    Zaheri, Parisa
    DESALINATION, 2010, 261 (1-2) : 73 - 79
  • [37] Thiopropyl-containing ionic liquid based periodic mesoporous organosilica as a novel and efficient adsorbent for the removal of Hg(II) and Pb(II) ions from aqueous solutions
    Elhamifar, Dawood
    Shojaeipoor, Frood
    Yari, Omolbanin
    RSC ADVANCES, 2016, 6 (63) : 58658 - 58666
  • [38] Application of Geopolymers Modified with Chitosan as Novel Composites for Efficient Removal of Hg(II), Cd(II), and Pb(II) Ions from Aqueous Media
    Ehab A. Abdelrahman
    Abdu Subaihi
    Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 2440 - 2463
  • [39] Application of Geopolymers Modified with Chitosan as Novel Composites for Efficient Removal of Hg(II), Cd(II), and Pb(II) Ions from Aqueous Media
    Abdelrahman, Ehab A.
    Subaihi, Abdu
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (07) : 2440 - 2463
  • [40] Hg(II) Removal from Aqueous Solutions by Bacillus subtilis Biomass
    Wang, Xue Song
    Li, Fei Yan
    He, Wen
    Miao, Hua Hua
    CLEAN-SOIL AIR WATER, 2010, 38 (01) : 44 - 48