The study of thermal runaway characteristics of multiple lithium batteries under different immersion times

被引:5
|
作者
Tao, Changfa [1 ]
Chen, Zhiyi [1 ]
Ye, Qingpan [1 ]
Li, Guangyu [1 ]
Zhang, Yu [1 ,2 ]
Liu, Yongqiang [1 ]
机构
[1] Hefei Univ Technol, Sch Automot & Transportat Engn, Hefei 230009, Anhui, Peoples R China
[2] 193 Tunxi Rd, Hefei 230026, Anhui, Peoples R China
关键词
Lithium-ion battery packs; Thermal runaway; Immersion time; Seawater; ION BATTERY; PROPAGATION; ABUSE; BEHAVIORS; DISCHARGE; MECHANISM; HAZARDS; PACK;
D O I
10.1007/s10973-022-11324-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
The lithium-ion battery (LIB) pack for an electric vehicle immersed in seawater is easy to induce short circuit and other thermal runaway (TR) safety accidents. In order to better understand the TR characteristics of LIB pack after immersion, and to effectively prevent safety accidents, a series of experiments on LIBs immersed in seawater have been conducted. In this study, LIB packs under 100% charging state were immersed in 3.5 mass% NaCl solution (used as seawater) for different immersion times (0-12 h). The maximum temperature, surface electric fire temperature, total mass loss, heat release rate (HRR) and total heat release (THR) were measured to evaluate the fire hazard of LIBs. The experimental results showed that the ignition temperature decreased with the increase of immersion times. However, the maximum temperature increased with increase in immersion times. The total mass loss firstly decreased and then stabilized with the increase of immersion times. The loss of electrolyte and combustible materials was the largest when immersion times reaches 3 h. Both HRR peak value and THR reached the maximum value when immersion times reaches 3 h. The spread rate of thermal runaway remains a stable value when the immersion time is larger than 3 h.
引用
收藏
页码:11457 / 11466
页数:10
相关论文
共 50 条
  • [41] Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries
    Zhirong Wang
    Ning Mao
    Fengwei Jiang
    Journal of Thermal Analysis and Calorimetry, 2020, 140 : 2849 - 2863
  • [42] Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
    Lai, Xin
    Wang, Shuyu
    Wang, Huaibin
    Zheng, Yuejiu
    Feng, Xuning
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
  • [43] Lithium-Ion Battery Thermal Runaway Propagation Characteristics Under 20 kPa with Different Airflow Rates
    Sun, Qiang
    Liu, Hangxin
    Zhi, Maoyong
    Zhao, Chenxi
    Jia, Jingyun
    Lv, Pengfei
    Xie, Song
    He, Yuanhua
    Chen, Xiantao
    FIRE TECHNOLOGY, 2023, 59 (03) : 1157 - 1179
  • [44] Lithium-Ion Battery Thermal Runaway Propagation Characteristics Under 20 kPa with Different Airflow Rates
    Qiang Sun
    Hangxin Liu
    Maoyong Zhi
    Chenxi Zhao
    Jingyun Jia
    Pengfei Lv
    Song Xie
    Yuanhua He
    Xiantao Chen
    Fire Technology, 2023, 59 : 1157 - 1179
  • [45] Thermal characteristics of thermal runaway for pouch lithium-ion battery with different state of charges under various ambient pressures
    Sun, Qiang
    Liu, Hangxin
    Zhi, Maoyong
    Chen, Xiantao
    Lv, Pengfei
    He, Yuanhua
    JOURNAL OF POWER SOURCES, 2022, 527
  • [46] Experimental study on the effect of phase change material on thermal runaway characteristics of lithium-ion battery under different triggering methods
    Mei, Jie
    Shi, Guoqing
    Li, Qing
    Liu, He
    Wang, Zhi
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [47] Research on thermal runaway and gas generation characteristics of NCM811 high energy density lithium-ion batteries under different triggering methods
    Lin, Chunjing
    Yan, Hongtao
    Qi, Chuang
    Mao, Jingbo
    Lao, Li
    Sun, Yazhou
    Ma, Tianyi
    Liu, Dinghong
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 64
  • [48] Investigation on gas generation and corresponding explosion characteristics of lithium-ion batteries during thermal runaway at different charge states
    Zhang, Jiabo
    Guo, Qianzhen
    Liu, Shaoyan
    Zhou, Chao
    Huang, Zhen
    Han, Dong
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [49] Thermal Runaway Early Warning and Risk Estimation Based on Gas Production Characteristics of Different Types of Lithium-Ion Batteries
    Cui, Yi
    Shi, Dong
    Wang, Zheng
    Mou, Lisha
    Ou, Mei
    Fan, Tianchi
    Bi, Shansong
    Zhang, Xiaohua
    Yu, Zhanglong
    Fang, Yanyan
    BATTERIES-BASEL, 2023, 9 (09):
  • [50] A lumped electrochemical-thermal model for simulating detection and mitigation of thermal runaway in lithium-ion batteries under different ambient conditions
    Mishra, Saumendra Nath
    Sarkar, Sourav
    Mukhopadhyay, Achintya
    Sen, Swarnendu
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 53