Finite Groups with σ-Subnormal Schmidt Subgroups

被引:0
|
作者
Ballester-Bolinches, A. [1 ,2 ]
Kamornikov, S. F. [3 ]
Yi, X. [4 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Univ Valencia, Dept Matemat, Dr Moliner 50, Valencia 46100, Spain
[3] F Scorina Gomel State Univ, Dept Math, Gomel 246019, BELARUS
[4] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zheji, Peoples R China
关键词
Finite group; Schmidt subgroup; sigma-subnormal subgroup;
D O I
10.1007/s40840-022-01369-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If sigma = (sigma(i) : i is an element of I) is a partition of the set P of all prime numbers, a subgroup H of a finite group G is said to be sigma-subnormal in G if H can be joined to G by means of a chain of subgroups H = H-0 subset of H-1 subset of . . . subset of H-n = G such that either Hi-1 normal in H-i or H-i/ Core(Hi) (Hi-1) is a sigma(j)-group for some j is an element of I, for every i = 1, . , n. If sigma = {{2}, {3}, {5}, ...} is the minimal partition, then the sigma-subnormality reduces to the classical subgroup embedding property of subnormality. A finite group X is said to be a Schmidt group if X is not nilpotent and every proper subgroup of X is nilpotent. Every non-nilpotent finite group G has Schmidt subgroups and a detailed knowledge of their embedding in G can provide a deep insight into its structure. In this paper, a complete description of a finite group with sigma-subnormal Schmidt subgroups is given. It answers a question posed by Guo, Safonova and Skiba.
引用
收藏
页码:2431 / 2440
页数:10
相关论文
共 50 条
  • [21] Finite Groups with Weakly Subnormal and Partially Subnormal Subgroups
    J. Huang
    B. Hu
    A. N. Skiba
    Siberian Mathematical Journal, 2021, 62 : 169 - 177
  • [22] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 595 - 610
  • [23] Permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Cossey, John
    Esteban-Romero, R.
    Ragland, M. F.
    Schmidt, Jack
    ARCHIV DER MATHEMATIK, 2009, 92 (06) : 549 - 557
  • [24] On Finite Groups with Pπ-Subnormal Subgroups
    Vasil'eva, T. I.
    Koranchuk, A. G.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 421 - 432
  • [25] Permutable subnormal subgroups of finite groups
    A. Ballester-Bolinches
    J. C. Beidleman
    John Cossey
    R. Esteban-Romero
    M. F. Ragland
    Jack Schmidt
    Archiv der Mathematik, 2009, 92 : 549 - 557
  • [26] Finite groups with abnormal and -subnormal subgroups
    Monakhov, V. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) : 352 - 363
  • [27] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Tyutyanov, V. N.
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 205 - 209
  • [28] On the products of ℙ-subnormal subgroups of finite groups
    A. F. Vasil’ev
    V. N. Tyutyanov
    T. I. Vasil’eva
    Siberian Mathematical Journal, 2012, 53 : 47 - 54
  • [29] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, James
    Feldman, A. D.
    Ragland, M. F.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) : 1066 - 1071
  • [30] On Generalized σ-Subnormal Subgroups of Finite Groups
    Hussain, Muhammad Tanveer
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2023, 16 : 81 - 89