New Bounds on the Triple Roman Domination Number of Graphs

被引:5
|
作者
Hajjari, M. [1 ]
Ahangar, H. Abdollahzadeh [2 ]
Khoeilar, R. [1 ]
Shao, Z. [3 ]
Sheikholeslami, S. M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol 4714871167, Iran
[3] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
关键词
INDEXES;
D O I
10.1155/2022/9992618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive sharp upper and lower bounds on the sum gamma([3R])(G)+gamma([3R])(G over bar) and product gamma([3R])(G)gamma([3R])(G over bar), where G over bar is the complement of graph G. We also show that for each tree T of order n & GE;2, gamma([3R])(T)& LE;3n+sT/2 and gamma([3R])(T)& GE; left ceiling 4(n(T)+2-l(T))/3 right ceiling , where s(T) and l(T) are the number of support vertices and leaves of T.
引用
收藏
页数:5
相关论文
共 50 条