This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method [Dorschner, Bosch, and Karlin, Phys. Rev. Lett. 121, 30602 (2018)] , the method operates in a static, nonmoving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem, and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to nonuniform grids.
机构:
National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational MathematicsState Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Beijing)
许爱国
张广财
论文数: 0引用数: 0
h-index: 0
机构:
National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational MathematicsState Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Beijing)
张广财
李英骏
论文数: 0引用数: 0
h-index: 0
机构:
State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Beijing)State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Beijing)
机构:
China Univ Min & Technol Beijing, State Key Lab GeoMech & Deep Underground Engn, Beijing 100083, Peoples R ChinaInst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
机构:
China Univ Min & Technol Beijing, State Key Lab GeoMech & Deep Underground Engn, Beijing 100083, Peoples R ChinaInst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China