Comparison of Classical and Modern Landing Control System for a Small Unmanned Aerial Vehicle

被引:0
|
作者
Nugroho, Larasmoyo [1 ]
机构
[1] Middle East Tech Univ, Dept Aerosp Engn, Ankara, Turkey
关键词
PID; Robust Control; Auto Landing; Ardupilot-Xplane; Mixed H-2/H infinity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Research presented in the following paper contrasted the modern optimal robust control method with classical one, applied for a landing control system of a small unmanned aerial vehicle. Philosophically speaking, the optimal control used H-2 method meets excellent dynamic performance, while the robustness given by the H infinity method diminish the effect of disturbance to the performance output. Accordingly, implemented mixed H2/H infinity optimal robust control method in this paper appear to meet a balancing result between performance and robustness stability. Three phases of flight, level flight, descent and flare used both classical and modern control system to stabilize and track the desired trajectory, which is exposed heavily to the presence of wind disturbance and ground effect. PID with fuzzy logic approach is employed to switch autopilot between the flight phases. Linear matrix inequality (LMI) approach is clearly suited to find the balanced H-2/H infinity gain. To sum up, all results simulated in linearized model (Simulink-Flight Gear), strengthened with non-linear model flight simulation (X-Plane). The optimal robust landing control system delivers the performance and stability superior than classical controller one as expected.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [21] Analysis of System Control Unmanned Aerial Vehicle
    Ablesimov, Oleksandr
    Sarapina, Katerina
    2012 2ND INTERNATIONAL CONFERENCE METHODS AND SYSTEMS OF NAVIGATION AND MOTION CONTROL (MSNMC), 2012, : 153 - 155
  • [22] Autonomous Landing of an Unmanned Aerial Vehicle on an Autonomous Marine Vehicle
    Venugopalan, T. K.
    Taher, Tawfiq
    Barbastathis, George
    2012 OCEANS, 2012,
  • [23] The Power System Design of Small Unmanned Aerial Vehicle
    Wang, Jee-Ray
    Tsai, Yu-Lung
    Wu, Li-Nuo
    Lin, Yu-Cheng
    2013 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2013, : 838 - 843
  • [24] Mobile Autonomous Recovery Landing Principle and Control Method for Unmanned Aerial Vehicle
    Wang S.
    Xu Y.
    Chen Z.
    Si J.
    Li B.
    Wang J.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (03): : 34 - 46
  • [25] Optimal Landing Control of an Unmanned Aerial Vehicle via Partial Feedback Linearization
    Zhou, Yang
    Takaba, Kiyotsugu
    2019 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2019, : 218 - 223
  • [26] AUTONOMOUS TAKEOFF AND LANDING CONTROL FOR SMALL SIZE UNMANNED AERIAL VEHICLES
    Stojcsics, Daniel
    Molnar, Andras
    COMPUTING AND INFORMATICS, 2013, 32 (06) : 1117 - 1130
  • [27] Adaptive Learning Control for a Quadrotor Unmanned Aerial Vehicle Landing on a Moving Ship
    Yuan, Yang
    Duan, Haibin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 534 - 545
  • [28] A Robust Control Strategy for Landing an Unmanned Aerial Vehicle on a Vertically Moving Platform
    Aguilar-Ibanez, Carlos
    Suarez-Castanon, Miguel S.
    Gutierrez-Frias, Octavio
    de Jesus Rubio, Jose
    Meda-Campana, Jesus A.
    COMPLEXITY, 2020, 2020
  • [29] Method for identifying the landing area of unmanned aerial vehicle
    Huang Jian-yu
    Qu Yu-fu
    Jiang Ji-xiang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2018, 33 (03) : 238 - 244
  • [30] Vision Based Automatic Landing of Unmanned Aerial Vehicle
    Anand, Amitesh
    Barman, Subhabrata
    Prakash, Nemani Sathya
    Peyada, Naba Kumar
    Sinha, Jayashri Deb
    RECENT ADVANCES IN INTELLIGENT INFORMATION SYSTEMS AND APPLIED MATHEMATICS, 2020, 863 : 102 - 113