Implementation of Generalized Back Projection Algorithm in 3-D EIT

被引:8
|
作者
Wang, Hongbin [1 ]
Xu, Guizhi [1 ]
Zhang, Shuai [1 ]
Yin, Ning [1 ]
Yan, Weili [1 ]
机构
[1] Hebei Univ Technol, Prov Minist, Joint Key Lab Electromagnet Field & Elect Apparat, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical impedance tomography; generalized back projection algorithm; image evaluation; image reconstruction; inverse problems; ELECTRICAL-IMPEDANCE TOMOGRAPHY; RECONSTRUCTION; IMAGES;
D O I
10.1109/TMAG.2010.2085423
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical impedance tomography (EIT) is an imaging modality of determining imaging the interior conductivity distribution within an object. In the paper, generalized back projection algorithm (GBPA) is proposed for EIT image reconstruction. The algorithm is based on node back projection algorithm (NBPA), and extends projection range to arbitrary part of the object. To evaluate the proposed method, GBPA is first applied to image reconstruction using a simulated cylinder model. Compared with conventional back projection algorithm (BPA) and NBPA, the images reconstructed by GBPA are more accurate in terms of several metrics used in the paper. In addition, we present image reconstruction results using a 128-channel EIT system to demonstrate the performance of GBPA in real experiments.
引用
收藏
页码:1466 / 1469
页数:4
相关论文
共 50 条
  • [21] 3-D Threat Image Projection
    Yildiz, Yesna O.
    Abraham, Douglas Q.
    Agaian, Sos
    Panetta, Karen
    THREE-DIMENSIONAL IMAGE CAPTURE AND APPLICATIONS 2008, 2008, 6805
  • [22] 3-D Point Cloud Registration Algorithm Based on Greedy Projection Triangulation
    Liu, Jian
    Bai, Di
    Chen, Li
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [23] Fast 3-D algorithm for the 3-D IDCT
    Alshibami, O
    Boussakta, S
    Darnell, M
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, 2003, : 825 - 828
  • [24] Implementation of the Derivative Back Projection - Finite Hilbert Inverse algorithm in projection reconstruction MRI
    Barral, Joelle K.
    Pelc, Norbert J.
    Pauly, John A.
    Nishimura, Dwight G.
    2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 4083 - +
  • [25] The study and implementation of the multigrid algorithm for the 3-D transport difference equation
    Yang, SL
    Shen, WD
    HPCS 2005: 19th International Symposium on High Performance Computing Systems and Applications, Proceedings, 2005, : 29 - 31
  • [26] A Parallel Implementation of the Katsevich Algorithm for 3-D CT Image Reconstruction
    Junjun Deng
    Hengyong Yu
    Jun Ni
    Tao He
    Shiying Zhao
    Lihe Wang
    Ge Wang
    The Journal of Supercomputing, 2006, 38 : 35 - 47
  • [27] A parallel implementation of the katsevich algorithm for 3-D CT image reconstruction
    Deng, Junjun
    Yu, Hengyong
    Ni, Jun
    He, Tao
    Zhao, Shiying
    Wang, Lihe
    Wang, Ge
    JOURNAL OF SUPERCOMPUTING, 2006, 38 (01): : 35 - 47
  • [28] IMPLEMENTATION OF GENERALIZED PERTURBATION-THEORY INTO THE 3-D NODAL CODE SIMULATE
    BOWMAN, SM
    WILLIAMS, ML
    DODDS, HL
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1980, 34 (JUN): : 305 - 307
  • [29] Hardware Implementation of Linear Back-Projection Algorithm for Capacitance Tomography
    Herdian, Hans
    Muttakin, Imamul
    Saputra, Almushfi
    Yusuf, Arbai
    Widada, Wahyu
    Taruno, Warsito P.
    2015 4TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATIONS, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING (ICICI-BME), 2015, : 124 - 129
  • [30] 3-D video capturing for multi-projection type 3-D display
    Kawakita, Masahiro
    Gurbuz, Sabri
    Iwasawa, Shoichiro
    Lopez-Gulliver, Roberto
    Yano, Sumio
    Ando, Hiroshi
    Inoue, Naomi
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2011, 2011, 8043