JADE: adaptive differential evolution with a small population

被引:24
|
作者
Brown, Craig [1 ]
Jin, Yaochu [2 ]
Leach, Matthew [3 ]
Hodgson, Martin [1 ]
机构
[1] Bosch Thermotechnol Ltd, Worcester WR4 9SW, Worcs, England
[2] Univ Surrey, Dept Comp, Guildford GU2 7XH, Surrey, England
[3] Univ Surrey, Fac Engn & Phys Sci, Ctr Environm Strategy, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Micro differential evolution; Small population; External archive; JADE; OPTIMIZATION; ALGORITHM; SIZE;
D O I
10.1007/s00500-015-1746-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new differential evolution (DE) algorithm for unconstrained continuous optimisation problems, termed JADE, that uses a small or 'micro' () population. The main contribution of the proposed DE is a new mutation operator, 'current-by-rand-to-pbest.' With a population size less than 10, JADE is able to solve some classical multimodal benchmark problems of 30 and 100 dimensions as reliably as some state-of-the-art DE algorithms using conventionally sized populations. The algorithm also compares favourably to other small population DE variants and classical DE.
引用
收藏
页码:4111 / 4120
页数:10
相关论文
共 50 条
  • [31] A self-adaptive multi-population differential evolution algorithm
    Zhu, Lin
    Ma, Yongjie
    Bai, Yulong
    NATURAL COMPUTING, 2020, 19 (01) : 211 - 235
  • [32] A self-adaptive multi-population differential evolution algorithm
    Lin Zhu
    Yongjie Ma
    Yulong Bai
    Natural Computing, 2020, 19 : 211 - 235
  • [33] Adaptive variable space differential evolution algorithm based on population distribution
    Zhu, Jun
    Yan, Xuefeng
    MEMETIC COMPUTING, 2013, 5 (01) : 49 - 64
  • [34] Adaptive variable space differential evolution algorithm based on population distribution
    Jun Zhu
    Xuefeng Yan
    Memetic Computing, 2013, 5 : 49 - 64
  • [35] An Asynchronous Adaptive Multi-population Model for Distributed Differential Evolution
    De Falco, Ivanoe
    Scafuri, Umberto
    Tarantino, Ernesto
    Della Cioppa, Antonio
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 5010 - 5017
  • [36] Truss structure optimization using adaptive multi-population differential evolution
    Wu, Chun-Yin
    Tseng, Ko-Ying
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 42 (04) : 575 - 590
  • [37] Self-adaptive population sizing for a tune-free differential evolution
    Teng, Nga Sing
    Teo, Jason
    Hijazi, Mohd. Hanafi A.
    SOFT COMPUTING, 2009, 13 (07) : 709 - 724
  • [38] Multi-Population Inflationary Differential Evolution Algorithm with Adaptive Local Restart
    Di Carlo, Marilena
    Vasile, Massimiliano
    Minisci, Edmondo
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 632 - 639
  • [39] Population Based Optimization via Differential Evolution and Adaptive Fractional Gradient Descent
    Liu, Zijian
    Luo, Chunbo
    Ren, Peng
    Wang, Tingwei
    Min, Geyong
    FILOMAT, 2020, 34 (15) : 5173 - 5185
  • [40] An adaptive differential evolution algorithm with automatic population resizing for global numerical optimization
    Choi, Tae Jong
    Ahn, Chang Wook
    Communications in Computer and Information Science, 2014, 463 : 68 - 72