TimeClust: a clustering tool for gene expression time series

被引:36
|
作者
Magni, Paolo [1 ]
Ferrazzi, Fulvia [1 ]
Sacchi, Lucia [1 ]
Bellazzi, Riccardo [1 ]
机构
[1] Univ Pavia, Dipartimento Informat & Sistemist, I-27100 Pavia, Italy
关键词
D O I
10.1093/bioinformatics/btm605
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
TimeClust is a user-friendly software package to cluster genes according to their temporal expression profiles. It can be conveniently used to analyze data obtained from DNA microarray time-course experiments. It implements two original algorithms specifically designed for clustering short time series together with hierarchical clustering and self-organizing maps.
引用
收藏
页码:430 / 432
页数:3
相关论文
共 50 条
  • [31] AngClust: Angle Feature-Based Clustering for Short Time Series Gene Expression Profiles
    Li, Aimin
    Xiong, Siqi
    Li, Junhuai
    Mallik, Saurav
    Liu, Yajun
    Fei, Rong
    Zhou, Hongfang
    Liu, Guangming
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1574 - 1580
  • [32] Integration of Functional Information of Genes in Fuzzy Clustering of Short Time Series Gene Expression Data
    Anand, Ashish
    Pal, Nikhil Ranjan
    Suganthan, Ponnuthurai Nagaratnam
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [33] Microarray Time-Series Data Clustering via Multiple Alignment of Gene Expression Profiles
    Subhani, Numanul
    Ngom, Alioune
    Rueda, Luis
    Burden, Conrad
    PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2009, 5780 : 377 - +
  • [34] Improved robustness in time series analysis of gene expression data by polynomial model based clustering
    Hirsch, Michael
    Tucker, Allan
    Swift, Stephen
    Martin, Nigel
    Orengo, Christine
    Kellam, Paul
    Liu, Xiaohui
    COMPUTATIONAL LIFE SCIENCES II, PROCEEDINGS, 2006, 4216 : 1 - 10
  • [35] DHC: A density-based hierarchical clustering method for time series gene expression data
    Jiang, DX
    Pei, J
    Zhang, AD
    THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, : 393 - 400
  • [36] Clustering gene expression time series data using an infinite Gaussian process mixture model
    McDowell, Ian C.
    Manandhar, Dinesh
    Vockley, Christopher M.
    Schmid, Amy K.
    Reddy, Timothy E.
    Engelhardt, Barbara E.
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (01)
  • [37] A Geometric Clustering Tool (AGCT) to robustly unravel the inner cluster structures of time-series gene expressions
    Nock, Richard
    Polouliakh, Natalia
    Nielsen, Frank
    Oka, Keigo
    Connell, Carlin R.
    Heimhofer, Cedric
    Shibanai, Kazuhiro
    Ghosh, Samik
    Aisaki, Ken-ichi
    Kitajima, Satoshi
    Kanno, Jun
    Akama, Taketo
    Kitano, Hiroaki
    PLOS ONE, 2020, 15 (07):
  • [38] Clustering of Wind Speed Time Series as a Tool for Wind Farm Diagnosis
    Martins, Ana Alexandra
    Vaz, Daniel C.
    Silva, Tiago A. N.
    Cardoso, Margarida
    Carvalho, Alda
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (03)
  • [39] Semi supervised fuzzy clustering networks for constrained analysis of time-series gene expression data
    Maraziotis, Ioannis A.
    Dragomir, Andrei
    Bezerianos, Anastasios
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 818 - 826
  • [40] Spectral Preprocessing for Clustering Time-'Series Gene Expressions
    Zhao, Wentao
    Serpedin, Erchin
    Dougherty, Edward R.
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2009, (01):