Hybrid Microwave-Radiation Patterns for High-Fidelity Quantum Gates with Trapped Ions

被引:8
|
作者
Arrazola, I. [1 ]
Plenio, M. B. [2 ,3 ]
Solano, E. [1 ,4 ,5 ,6 ]
Casanova, J. [1 ,4 ]
机构
[1] Univ Basque Country, Dept Phys Chem, UPV EHU, Apartado 644, Bilbao 48080, Spain
[2] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[3] Univ Ulm, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
[4] Basque Fdn Sci, Ikerbasque, Maria Diaz de Haro 3, Bilbao 48013, Spain
[5] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[6] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
关键词
LOGIC GATES; COMPUTATION;
D O I
10.1103/PhysRevApplied.13.024068
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a method that combines continuous and pulsed microwave-radiation patterns to achieve robust interactions among hyperfine trapped ions placed in a magnetic field gradient. More specifically, our scheme displays continuous microwave drivings with modulated phases, phase flips, and pi pulses. This leads to high-fidelity entangling gates that are resilient against magnetic field fluctuations, changes in the microwave amplitudes, and crosstalk effects. Our protocol runs with arbitrary values of microwave power, which includes the technologically relevant case of low microwave intensities. We demonstrate the performance of our method with detailed numerical simulations that take into account the main sources of decoherence.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High-fidelity quantum driving
    Bason, Mark G.
    Viteau, Matthieu
    Malossi, Nicola
    Huillery, Paul
    Arimondo, Ennio
    Ciampini, Donatella
    Fazio, Rosario
    Giovannetti, Vittorio
    Mannella, Riccardo
    Morsch, Oliver
    NATURE PHYSICS, 2012, 8 (02) : 147 - 152
  • [42] High-fidelity quantum driving
    Bason M.G.
    Viteau M.
    Malossi N.
    Huillery P.
    Arimondo E.
    Ciampini D.
    Fazio R.
    Giovannetti V.
    Mannella R.
    Morsch O.
    Nature Physics, 2012, 8 (2) : 147 - 152
  • [43] Achieving high-fidelity single-qubit gates in a strongly driven silicon-quantum-dot hybrid qubit
    Yang, Yuan-Chi
    Coppersmith, S. N.
    Friesen, Mark
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [44] Fast high-fidelity entangling gates for spin qubits in Si double quantum dots
    Calderon-Vargas, F. A.
    Barron, George S.
    Deng, Xiu-Hao
    Sigillito, A. J.
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW B, 2019, 100 (03)
  • [45] Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots
    Tanttu, Tuomo
    Lim, Wee Han
    Huang, Jonathan Y.
    Stuyck, Nard Dumoulin
    Gilbert, Will
    Su, Rocky Y.
    Feng, Mengke
    Cifuentes, Jesus D.
    Seedhouse, Amanda E.
    Seritan, Stefan K.
    Ostrove, Corey I.
    Rudinger, Kenneth M.
    Leon, Ross C. C.
    Huang, Wister
    Escott, Christopher C.
    Itoh, Kohei M.
    Abrosimov, Nikolay V.
    Pohl, Hans-Joachim
    Thewalt, Michael L. W.
    Hudson, Fay E.
    Blume-Kohout, Robin
    Bartlett, Stephen D.
    Morello, Andrea
    Laucht, Arne
    Yang, Chih Hwan
    Saraiva, Andre
    Dzurak, Andrew S.
    NATURE PHYSICS, 2024, : 1804 - 1809
  • [46] Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing
    Rabl, P.
    Zoller, P.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [47] Benchmarking and Fidelity Response Theory of High-Fidelity Rydberg Entangling Gates
    Tsai, Richard Bing-Shiun
    Sun, Xiangkai
    Shaw, Adam L.
    Finkelstein, Ran
    Endres, Manuel
    PRX QUANTUM, 2025, 6 (01):
  • [48] Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear Paul trap
    Wu, Yukai
    Wang, Sheng-Tao
    Duan, L. -M.
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [49] Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer
    Du, Jiangfeng
    Zou, Ping
    Wang, Z. D.
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [50] Optimal control for fast and high-fidelity quantum gates in coupled superconducting flux qubits
    Huang, Shang-Yu
    Goan, Hsi-Sheng
    PHYSICAL REVIEW A, 2014, 90 (01):